Organic Letters
Letter
(6) (a) Hino, T.; Yamada, S.-i. Tetrahedron Lett. 1963, 4, 1757.
(b) Hendrickson, J. B.; Goschke, R.; Ress, R. Tetrahedron 1964, 20, 565.
(c) Fang, C.-L.; Horne, S.; Taylor, N.; Rodrigo, R. J. Am. Chem. Soc.
1994, 116, 9480.
(7) (a) Scott, A. L.; Guo, L.; McCapra, F.; Hall, E. S. J. Am. Chem. Soc.
1964, 86, 302. (b) Ishikawa, H.; Takayama, H.; Aimi, N. Tetrahedron
Lett. 2002, 43, 5637. (c) Li, Y.-X.; Wang, H.-X.; Ali, S.; Xia, X.-F.; Liang,
Y.-M. Chem. Commun. 2012, 2343.
(8) (a) Tadano, S.; Mukaeda, Y.; Ishikawa, H. Angew. Chem., Int. Ed.
2013, 52, 7990 and references cited. For radical mediated dimerization,
see: (b) Movassaghi, M.; Schmidt, M. A. Angew. Chem., Int. Ed. 2007, 46,
3725. (c) Kim, J.; Ashehurst, J. A.; Movassaghi, M. Science 2009, 324,
238. (d) Kim, J.; Movassaghi, M. J. Am. Chem. Soc. 2010, 132, 14376.
(9) Li, Y.; Wang, W.-H.; Yang, S.-D.; Li, B.-J.; Feng, C.; Shi, Z. J. Chem.
Commun. 2010, 46, 4553.
(10) Our one-pot synthesis of dimeric 2-oxindoles afforded product 3
only in 30−42% yields; see: Ghosh, S.; De, S.; Kakde, B. N.; Bhunia, S.;
Adhikary, A.; Bisai, A. Org. Lett. 2012, 14, 5864.
(11) For direct oxidative coupling, see: (a) DeMartino, M. P.; Chen,
K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546 and references
therein. (b) Jia, Y. X.; Kundig, E. P. Angew. Chem., Int. Ed. 2009, 48,
̈
Figure 4. Further scope.
1636. (c) Perry, A.; Taylor, R. J. K. Chem. Commun. 2009, 3249.
(d) Guo, F.; Konkol, L. C.; Thomson, R. J. J. Am. Chem. Soc. 2011, 133,
18. (e) Bhunia, S.; Ghosh, S.; Dey, D.; Bisai, A. Org. Lett. 2013, 15, 2426.
(12) For iodine in homodimerization reactions, see: (a) Alvarez-Ibarra,
ment of catalytic versions of this method as well. The high
synthetic value of oxidative coupling products ensures further
improvement in this field and its applications in the total
synthesis of dimeric cyclotryptamine alkaloids.
C.; Csaky, A. G.; Colmenero, B.; Quiroga, M. L. J. Org. Chem. 1997, 62,
́
̈
2478. (b) Kuo, W.-J.; Chen, Y.-H.; Jeng, R.-J.; Chan, L.-H.; Lin, W.-P.;
Yang, Z.-M. Tetrahedron 2007, 63, 7086.
(13) We sincerely thank one of the reviewers for investigating the effect
of simple bases, such as tBuONa, Na2CO3, K2CO3, and Cs2CO3, under
the optimized conditions.
ASSOCIATED CONTENT
* Supporting Information
General experimental procedures and analytical data for all new
compounds. This material is available free of charge via the
■
S
(14) The vinyloxy radical has been proposed earlier by Baran and co-
workers: Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.;
Castroveijo, P. M.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857.
(15) (a) Montoro, R.; Wirth, T. Org. Lett. 2003, 5, 4729. (b) Akhtar,
M.; Barton, D. H. R. J. Am. Chem. Soc. 1964, 86, 1528.
(16) We sincerely thank the reviewers for their valuable suggestions to
validate the reactions using a preformed well-known radical generator
tBuOI.
AUTHOR INFORMATION
Corresponding Author
■
Notes
(17) We have also conducted the oxidative dimerization in the
t
presence of in situ generated BuOI (see Supporting Information for
details) and found that oxidative dimerized products can be obtained in
synthetically useful yields.
The authors declare no competing financial interest.
(18) For use of NIS as an oxidant in an oxidative bond-forming
reaction, see: (a) West, S. P.; Bisai, A.; Lim, A. D.; Narayan, R. R.;
Sarpong, R. J. Am. Chem. Soc. 2009, 131, 11187. (b) Foo, K.; Newhouse,
T.; Mori, I.; Takayama, H.; Bran, P. S. Angew. Chem., Int. Ed. 2011, 50,
2716.
(19) For a recent example, see: Wang, J.; Yuan, Y.; Xiong, R.; Zhang-
Negrerie, D.; Du, Y.; Zhao, K. Org. Lett. 2012, 14, 2210.
(20) The major diastereomer of our oxidative process is the active one,
which was confirmed from HPLC analysis of one of the products (9a).
(21) The dimeric 2-oxindoles of the type 9a can be converted to C2-
symmetric 2-oxindoles with vicinal all-carbon quaternary stereocenters.
See our report: Ghosh, S.; Bhunia, S.; Kakde, B. N.; De, S.; Bisai, A.
Chem. Commun. 2014, 50, 2434.
(22) For pioneering work on enantioselective double decarboxylative
allylations, see: (a) Trost, B. M.; Osipov, M. Angew. Chem., Int. Ed. 2013,
52, 9176. (b) Enquist, J. A., Jr.; Stoltz, B. M. Nature 2008, 453, 1228.
(23) For Pd-catalyzed asymmetric prenylations and geranylations, see:
Trost, B. M.; Malhotra, S.; Chan, W. H. J. Am. Chem. Soc. 2011, 133,
7328.
ACKNOWLEDGMENTS
■
Financial support from the DST (SR/S1/OC-54/2011) and the
CSIR [02(0013)/11/EMR-II], Govt. of India is gratefully
acknowledged. S.G. and S.C. thank the CSIR and UGC, New
Delhi, for the SRF and JRF, respectively.
REFERENCES
■
(1) (a) For an excellent review, see: Vrettou, M.; Gary, A. A.; Brewer,
A. R. E.; Barrett, A. G. M. Tetrahedron 2007, 63, 1487 and references
cited. (b) Depew, K. M.; Marsden, S. P.; Zatorska, D.; Zatorski, A.;
Bornmann, W. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11953.
(c) Ziegler, F. E.; Harran, P. G. J. Org. Chem. 1993, 58, 2768.
(2) For excellent reviews, see: (a) May, J. A.; Stoltz, B. M. Tetrahedron
2006, 62, 5262. (b) Steven, A.; Overman, L. E. Angew. Chem., Int. Ed.
2007, 119, 5584. (c) Schmidt, M. A.; Movassaghi, M. Synlett 2008, 313.
(3) (a) Overman, L. E.; Paone, D. V.; Sterns, B. A. J. Am. Chem. Soc.
1999, 121, 7702. (b) Overman, L. E.; Larrow, J. F.; Stearns, B. A.; Vance,
J. M. Angew. Chem., Int. Ed. 2000, 39, 213. (c) Overman, L. E.; Paone, D.
V. J. Am. Chem. Soc. 2001, 123, 9465.
(4) (a) Dyker, G., Ed. Handbook of C−H Transformations: Applications
in Organic Synthesis; Wiley-VCH: Weinheim, 2005; Vol. 2. (b) Guo, F.;
Clift, M. D.; Thomson, R. J. Eur. J. Org. Chem. 2012, 4881.
(5) (a) Newhouse, T.; Baran, P. S.; Hoffmann, R. W. Chem. Soc. Rev.
2009, 38, 3010. (b) Gaich, T.; Baran, P. S. J. Org. Chem. 2010, 75, 4657
and references cited.
D
Org. Lett. XXXX, XXX, XXX−XXX