Y. Iijima et al. / Tetrahedron Letters 50 (2009) 2970–2972
2971
tion, followed by intramolecular disulfide bond formation either on
the solid-phase or in the solution phase, leading to 1 (Scheme 1).
Our initial attempts for solid-phase total synthesis utilizing
safety-catch linkers, such as Kenner’s sulfonamide linker13 and a
hydrazinobenzoyl linker14 were unsuccessful.15 Then, we chose
the 2-chlorotrityl linker for the preparation of the cyclization pre-
cursor by an Fmoc strategy. The Fmoc derivative 4, readily pre-
pared from its Boc derivative,11 was immobilized on the 2-
chlorotrityl chloride resin (8) (Scheme 2).16 The loading amount
was determined to be 1.0 mmol gÀ1 by cleavage from the resin
(1% CF3COOH/CH2Cl2). Surprisingly, the Fmoc group in 9 could
not be removed by conventional methods (20% piperidine/DMF).
The complete deprotection, however, was performed by treatment
of the well-swollen resins with 2% DBU and 2% piperidine in DMF
five times.17 The magic mixture (20% piperidine in 1% TritonX100
CH2Cl2/DMF/NMP = 1:1:1),18 which is useful for deprotection of
the N-terminus of aggregating peptide sequences, was also effec-
tive in our case. Fortunately, the 4-amino-3-hydroxy-5-methyl-
hexanoate 10 was stable in such strongly basic conditions
without forming lactam 11, due to the steric hindrance of the trityl
group.
dation was successfully performed without observation of severe
epimerization (<5%).20 The coupling with Fmoc–
-Ala–OH (6)
D
(DIC/HOBt) and (E)-3-hydroxy-7-tritylthio-4-heptenoic acid
(7)11,21 (PyBOP/DIEA) was sequentially performed. The linear pep-
tide 2 (W = OH) was cleaved from the polymer-support with 30%
hexafluoroisopropyl alcohol in CH2Cl2.22 After simple filtration
through silica gel column, 2 (W = OH) was isolated in 56% overall
yield.23 According to our previous synthesis with modification of
the reaction conditions, macrolactonization using Shiina’s method
(MNBA/DMAP/CH2Cl2/1 mM/rt),24 followed by disulfide bond for-
mation (I2/MeOH) was performed in solution phase to furnish spir-
uchostatin A (1) in 89% overall yield. The spectral data of synthetic
1 were in good accordance with those of the natural product.11
In summary, we accomplished a solid-phase total synthesis of
spiruchostatin A. The linear peptide was assembled by an Fmoc
strategy using the 2-chlorotrityl linker on a polymer-support. After
cleavage from the polymer-support, macrocyclization and disulfide
formation in solution phase provided spiruchostatin A in a high
overall yield. This solid-phase procedure was adapted to the com-
binatorial synthesis of a library of spiruchostatin analogues based
on in silico design. The experimental details and their biological
investigation will be reported in due course. Furthermore, it can
be employed in the synthesis of other natural product HDAC inhib-
itors such as FK228 and the recently isolated largazole.21,25,26
The next step, involving condensation of 10 with Fmoc-D-
Cys(Trt)-OH (5), was also initially problematic. When the resin
10 was treated with a mixture of 5, diisopropylcarbodiimide
(DIC), and 1-hydroxybenzotriazole (HOBt) in DMF–CH2Cl2 (4:1),
the dipeptide 12 formed was a 77:23 mixture of diastereomers.
Acknowledgments
The
a
position of the cysteine residue was partially racemized19
prior to the acylation probably because the condensation of steri-
cally hindered amine 10 would be too slow. We needed to over-
come the problem by pre-incubation forming an activated ester
in an appropriate mixed solvent. When a mixture of 5, DIC, HOBt
in DMF–CH2Cl2 (1:1) was incubated for 5 min in advance, the ami-
This work was supported by New Energy and Industrial Tech-
nology Development Organization.
References and notes
1. Kazantsev, A. G.; Thompson, L. M. Nat. Rev. Drug Discov. 2008, 10, 854–868.
2. (a) Carey, N.; La Thangue, N. B. Curr. Opin. Pharmacol. 2006, 4, 369; (b) Glaser, K.
B. Biochem. Pharm. 2007, 74, 659–671.
3. Marks, P. A.; Breslow, R. Nat. Biotechnol. 2007, 25, 84–90.
4, DIEA,
4. (a) Ueda, H.; Nakajima, H.; Hori, Y.; Fujita, T.; Nishimura, M.; Goto, T.; Okuhara,
M. J. Antibiot. 1994, 47, 301–310; (b) Furumai, R.; Matsuyama, A.; Kobashi, N.;
Lee, K.-H.; Nishiyama, M.; Nakajima, H.; Tanaka, A.; Komatsu, Y.; Nishino, N.;
Yoshida, M.; Horinouchi, S. Cancer Res. 2002, 62, 4916–4921.
Cl
CH2Cl2
O
FmocHN
L
Cl
OH
O
(68%)
5. Piekarz, R. L.; Frye, A. R.; Wright, J. J.; Steinberg, S. M.; Liewehr, D. J.; Rosing, D.
R.; Sachdev, V.; Fojo, T.; Bates, S. E. Clin. Cancer Res. 2006, 12, 3762–3773.
6. (a) Masuoka, Y.; Nagai, A.; Shin-ya, K.; Furihata, K.; Nagai, K.; Suzuki, K.;
Hayakawa, Y.; Seto, H. Tetrahedron Lett. 2001, 42, 41–44; (b) Davidson, S. M.;
Townsend, P. A.; Carroll, C.; Yurek-George, A.; Balasubramanyam, K.; Kundu, T.
K.; Stephanou, A.; Packham, G.; Ganesan, A.; Latchman, D. S. ChemBioChem.
2005, 6, 162–170; (c) Crabb, S. J.; Howell, M.; Rogers, H.; Ishfag, M.; Yurek-
George, A.; Carey, K.; Pickering, B. M.; East, P.; Mitter, R.; Maeda, S.; Johnson, P.
W. M.; Townsend, P.; Shin-ya, K.; Yoshida, M.; Ganesan, A.; Packham, G.
Biochem. Pharmcol. 2008, 76, 463–475.
9
L = 2-chlorotrityl
(1.48 mmol g–1
)
(1.0 mmol g–1
)
8
2%DBU,
2%piperidine,
DMF
OH
O
HN
H2N
L
OH
O
10 min x 5
O
7. Bhuiyan, M. P. I.; Kato, T.; Okauchi, T.; Nishino, N.; Maeda, S.; Nishino, T. G.;
Yoshida, M. Bioorg. Med. Chem. 2006, 14, 3438–3446.
11
10 L = 2-chlorotrityl
8. Yurek-George, A.; Cecil, A. R. L.; Mo, A. H. K.; Wen, S.; Rogers, H.; Habens, F.;
Maeda, S.; Yoshida, M.; Packham, G.; Ganesan, A. J. Med. Chem. 2007, 50, 5720–
5726.
9. Bowers, A. A.; Greshock, T. J.; West, N.; Estiu, G.; Schreiber, S. L.; Wiest, O.;
Williams, R. M.; Bradner, J. E. J. Am. Chem. Soc. 2009, 131, 2900–2905.
10. For a solid-phase synthesis of FK228 analogues: Maro, S. D.; Pong, R.-C.; Hsieh,
J.-T.; Ahn, J.-M. J. Med. Chem. 2008, 51, 6639–6641.
O
5, DIC, HOBt,
O
FmocHN
TrtS
DMF–CH2Cl2(1:1)
N
H
L
OH
O
11. (a) Yurek-George, A.; Habens, F.; Brimmell, M.; Packham, G.; Ganesan, A. J. Am.
Chem. Soc. 2004, 126, 1030–1031; (b) Doi, T.; Iijima, Y.; Shin-ya, K.; Ganesan, A.;
Takahashi, T. Tetrahedron Lett. 2006, 47, 1177–1180.
L = 2-chlorotrityl
12
12. (a) Takizawa, T.; Watanabe, K.; Narita, K.; Kudo, K.; Oguchi, T.; Abe, H.; Katoh,
T. Heterocycles 2008, 76, 275–290; (b) Takizawa, T.; Watanabe, K.; Narita, K.;
Oguchi, T.; Abe, H.; Katoh, T. Chem. Commun. 2008, 1677–1679.
13. (a) Kenner, G. W.; McDermott, J. R.; Sheppard, R. C. J. Chem. Soc., Chem.
Commun. 1971, 636–637; (b) Backes, B. J.; Ellman, J. A. J. Am. Chem. Soc. 1994,
116, 11171–11172; (c) Bourel-Boonnet, L.; Rao, K. V.; Hamann, M. T.; Ganesan,
A. J. Med. Chem. 2005, 48, 1330–1335.
14. (a) Wolman, Y.; Gallop, P. M.; Patchornik, A. J. Am. Chem. Soc. 1961, 83, 1263–
1264; (b) Wieland, T.; Lewalter, J.; Birr, C. Liebigs Ann. Chem. 1970, 740, 31–47;
(c) Semenov, A. N.; Gordeev, K. Y. Int. J. Pept. Protein Res. 1995, 45, 303–304; (d)
Millington, C. R.; Quarrell, R.; Lowe, G. Tetrahedron Lett. 1998, 39, 7201–7204;
(e) Rosenbaum, C.; Waldmann, H. Tetrahedron Lett. 2001, 42, 5677–5680.
15. In the case of a sulfonamide linker, immobilization of N-Boc (3S,4R)-3-amino-
4-hydroxy-5-methylhexanoic acid using various condensation reagents
1) MNBA, DMAP
1 mM CH2Cl2
rt
1) 2% DBU, 2% piperidine, DMF
2) 6, DIC, HOBt, DMF–CH2Cl2(1:1)
3) 2% DBU, 2% piperidine, DMF
1
2
2) I2, MeOH
CH2Cl2
(W = OH)
4) 7, PyBOP, DIEA, CH2Cl2
5) 30% (CF3)2CHOH, CH2Cl2
(89%)
(56% from 9)
Scheme 2. The solid-phase total synthesis of spiruchostatin A (1). DIEA = N,N-
diisopropylethylamine, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene, DIC = diisopro-
PyBOP = (benzotriazol-1-
yloxy)tripyrrolidinophosphonium hexafluorophosphate, MNBA = 2-methyl-6-nitro-
benzoic anhydride, DMAP = 4-(dimethylamino)pyridine.
pylcarbodiimide,
HOBt = 1-hydroxybenzotriazole,