Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Gratifyingly, we have studied the 1H-NMR analysis for the detection (6) (a) B. Blank and R. Kempe, J. Am. Chem. Soc., 2010,V1ie3w2A,r9tic2le4-O9n2lin5e;
of in situ generation of water during alkylation process (SI, Scheme (b) Y. Obora, S. Ogawa and N. Yamamoto, DJ.OOI:r1g0..1C0h3e9m/D.0, C2C010125,9737H,
S10). Finally, to determine the rate and order of the reaction, two 9429-9433; (c) C. Chaudhari, S. M. A. H. Siddiki and K. Shimizu,
sets of kinetics experiments were performed and we observed the Tetrahedron Lett., 2013, 54, 6490-6493; (d) T. Feng, H. Li, D. Young
first order kinetics (SI, Scheme S6).
and J. Lang, J. Org. Chem., 2017, 82, 4113-4120; For recent selected
Based on our initial mechanistic and control experiments, we examples, see: (e) Z. Tan, H. Jiang and M. Zhang, Chem. Commun.,
proposed a possible catalytic cycle in Scheme 1c.12 Primarily, to 2016, 52, 9359-9362; (f) C.-S. Wang, T. Roisnel, P. H. Dixneuf and J.-
establish the involvement of 1a’, we proposed the base mediated F. Soule, Org. Lett., 2017, 19, 6720-6723; For others closely related
(de)aromatization of quinaldine 1a to 1a’. For instance, in absence of examples, see: (g) Z. Tan, H. Jiang, and M. Zhang, Chem. Commun.,
base, no 3a was formed (Table 1, entry 12), highlighting the essential 2016, 52, 9359-9362; (h) C. Zhou, Z.Tan, H. Jiang and M. Zhang,
role of t-BuOK for (de)aromatization of quinaldine. Additionally, ChemCatChem, 2018, 10, 2887-2892.
(7) (a) R. M. Bullock, Catalysis Without Precious Metals, Wiley-VCH,
Weinheim, 2010; (b) R. J. M. K. Gebbink and M.-E. Moret, Non-Noble
Metal Catalysis, John Wiley & Sons, 2019; (c) A. Corma, J. Navas and
M. J. Sabater, Chem. Rev., 2018, 118, 1410-1459; (d) B. G. Reed-
Berendt, K. Polidano and L. C. Morrill, Org. Biomol. Chem., 2019, 17,
1595-1607; (e) T. Irrgang and R. Kempe, Chem. Rev., 2019, 119, 2524.
(8) (a) B. M. Ramalingam, I. Ramakrishna and M. Baidya, J. Org.
Chem., 2019, 84, 9819-9825; (b) R. Xie, F. Xie. C.-J. Zhou, H.-F. Jiang
and M. Zhang, Journal of Catalysis, 2019, 377, 449-454; (c) A. Mishra,
A. D. Dwivedi, S. Shee and S. Kundu, Chem. Commun., 2020, 56, 249-
252; (d) Y. Nakamura, A. Azuma, S. Kato, Y. Oe and T. Ohta, Chemistry
Letters., 2019, 48, 1192-1200; (e) J. Rana, R. Babu, M. Subaramanian
and E. Balaraman, Org. Chem. Front., 2018, 5, 3250-3255; (f) M. K.
Barman, S. Waiba, and B. Maji, Angew. Chem., Int. Ed., 2018, 57,
9126-9130; (g) G. Zhang, T. Irrgang, T. Dietel, F. Kallmeier and R.
Kempe, Angew. Chem., Int. Ed., 2018, 57, 9131-9135.
(9)(a) M. Albrecht, R. Bedford and B. Plietker, Organometallics, 2014,
33, 5619-5621; (b) I. Bauer and H.-J. Knölker, Chem. Rev., 2015, 115,
3170-3387; (c) T. Yan and K. Barta, ChemSusChem, 2016, 9, 2321-
2325; (d) T. Yan, B.L. Feringa and K. Barta ACS Catalysis, 2016, 6, 381-
388; (e) K. Polidano, B. D. W. Allen, J. M. J. Williams and L. C. Morrill,
ACS Catal., 2018, 8, 6440-6445; (f) T. J. Brown, M. Cumbes, L. J.
Diorazio, G. J. Clarkson and M. Wills, J. Org. Chem., 2017, 82, 10489.
(10) (a) M. Vellakkaran, K. Singh and D. Banerjee, ACS Catal., 2017, 7,
8152-8158; (b) K. Singh, M. Vellakkaran and D. Banerjee, Green
Chem., 2018, 20, 2250-2256. (c) A. Alanthadka, S. Bera and D.
Banerjee, J. Org. Chem., 2019, 84, 11676-11686; (d) L. M. Kabadwal,
J. Das and D. Banerjee, Chem. Commun., 2018, 54, 14069-14072.
(11) (a) J. Das, M. Vellakkaran, M. Sk and D. Banerjee, Org. Lett.,
2019, 21, 7514-7518. (b) J. Das, M. Vellakkaran and D. Banerjee,
Chem. Commun., 2019, 55, 7530-7533.
when 1a was reacted with D2O and t-BuOK at 140 C for 12 h, 1a-d1
was formed in 20% yield (Scheme 4c). Again, to trap the intermediate
1a’, an in situ experiment was performed using 1a with 3a’ and
resulted 9 in 50 % yield (Scheme 4c). These, control experiments
strongly support the participation of enamine 1a’ (SI, Scheme S9). On
the basis of our initial findings and literature report, we anticipated
that, initially, alcohol 2a undergoes dehydrogenation to aldehyde 2a’
catalyzed by iron and transient Fe-H species is formed (Scheme 1c).9
Afterward, aldehyde coupled with enamine 1a’ to the intermediate
3a’. Successive hydrogenation of 3a’ by transient Fe-H species gave
alkylated product 3a with the elimination of water (Scheme 1c).
Notably, chemo-selective alkylation was achieved when 1,4-dioxane
was used as solvent and facilitate the hydrogenation of 3a’ by Fe-H
species.11a Nevertheless, Meerwein-Ponndorf mechanism for such
process is another possibility.13b
In summary, we have reported an operationally simple and cost-
efficient iron-catalysed system for the alkylation of 2-methyl and 4-
methylazaarenes with alcohols. A series of substituted N-hetero-
arenes could efficiently participated with various cyclic and acyclic
alkyl alcohols, hetero-aryl alcohols having allylic and terminal olefin
functionalities. Multi-functionalisation of pyrazines, synthesis of
anti-malarial drug (±) Angustureine including initial mechanistic
investigation, kinetic studies and trapping of the enamine
intermediate 1a’ are of special highlights.
The authors thank DAE-BRNS, India (Young Scientist Research Award
to D. B., 37(2)/20/33/2016-BRNS). IIT Roorkee (SMILE-32) and DST
(FIST) are gratefully acknowledge for providing instrumentation
facilities. L. M. K. and S. B. thank UGC (India) and INSPIRE Fellowship
(DST/2017/IF170766) for financial support.
Conflicts of interest
There are no conflicts to declare.
(12) M. Vellakkaran, J. Das, S. Bera and D. Banerjee, Chem. Commun.
2018, 54, 12369-12372.
Notes and references
(1) (a) G. Diaz, I. L. Miranda and M. A. N. Diaz, in Phytochemicals-
Isolation, Characterization and Role in Human Health, InTech, 2015.
(2) L. C. Campeau and K. Fagnou, Chem. Soc. Rev., 2007, 36, 1058.
(3) For selected examples, see: (a) D. Shabashov and O. Daugulis, J.
Am. Chem. Soc., 2010, 132, 3965-3972; (b) S.-Y. Zhang, G. He, W. A.
Nack, Y. Zhao, Q. Li and G. Chen, J. Am. Chem. Soc., 2013, 135, 2124-
2127; (c) G. Casiraghi, L. Battistini, C. Curti, G. Rassu and F. Zanardi,
Chem. Rev., 2011, 111, 3076-3154; (d) C. Palomo, M. Oiarbide and J.
M. Garcia, Chem. Soc. Rev., 2004, 33, 65-75.
(13) (a) M. H. S. A. Hamid, C. L. Allen, G. W. Lamb, A. C. Maxwell, H.
C. Maytum, A. J. A. Watsom and J. M. J. Williams, J. Am. Chem. Soc.,
2009, 131, 1766-1774; (b) J. Ekstrcm, J. Wettergren, and H.
Adolfsson, Adv. Synth. Catal. 2007, 349, 1609-1613.
(4) K. Barta and P. C. Ford, Acc. Chem. Res., 2014, 47, 1503-1512.
(5) For selected reviews: (a) G. Guillena, D. J. Ramon and M. Yus,
Chem. Rev., 2010, 110, 1611-1641; (b) J. F. Bower and Krische, Top.
Organomet. Chem., 2011, 34, 107-138; (c) A. J. A. Watson and J. M. J.
Williams, Science, 2010, 329, 635-636; (d) S. Bähn, I. Sebastian, L.
Neubert, M. Zhang, H. Neumann and M. Beller, ChemCatChem.,
2011, 3, 1853-1864; (e) G. E. Dobereiner and R. H. Crabtree, Chem.
Rev., 2010, 110, 681-703.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins