2020
C. Mu¨ller et al. / Tetrahedron Letters 47 (2006) 2017–2020
1050 hꢀ1 was found (d). Similar to the results mentioned
above, a decrease in the enantioselectivity (ee = 14.0%
at T = 25 °C; ee = 9.2% at T = 40 °C, S-product) was
observed for this system.
6. (a) Breit, B.; Winde, R.; Harms, K. J. Chem. Soc., Perkin
Trans. 1 1997, 18, 2681–2682; (b) Breit, B.; Winde, R.;
Mackewitz, T.; Paciello, R.; Harms, K. Chem. Eur. J.
2001, 7, 3106–3121; (c) Knoch, F.; Kremer, F.; Schmidt,
U.; Zenneck, U.; Le Floch, P.; Mathey, F. Organometal-
lics 1996, 15, 2713–2719; (d) Reetz, M. T.; Mehler, G.
Tetrahedron Lett. 2003, 44, 4593–4596; (e) Reetz, M. T.;
Li, X. Angew. Chem., Int. Ed. 2005, 44, 2962–2964.
7. Breit, B. J. Mol. Catal. A: Chem. 1999, 143, 143–154.
8. For the synthesis of 1a/4a see Ref. 6b, for 1b and 4b see
the Supplementary data.
In summary, phosphabenzenes should be regarded as far
more than laboratory curiosities. Subsequent work to
improve the activity and selectivity of chiral, bidentate
phosphabenzenes-based ligands, as well as investiga-
tions on their scope and limitations in other asymmetric
homogeneous catalytic reactions is currently being car-
ried out in our laboratories.
´
9. Suarez, A.; Pizzano, A. Tetrahedron: Asymmetry 2001, 12,
2501–2504.
10. Crystal structure of 2a: [C23H17O2]+Brꢀ, Mr =
405.27 g molꢀ1
c = 10.480(2) A,
,
triclinic, P1a ¼ 9:139ð2Þ, b = 9.805(2),
ꢀ
˚
a = 91.89(2),
b = 102.85(2),
c =
3
Acknowledgments
˚
106.51(2) deg, V = 873.2(3) A . 26,528 Reflections mea-
sured, 3979 unique, using MoKa radiation (k =
0.71073 A). Structure solved with direct methods
(SHELXS86), 238 parameters refined (SHELXL-97), including
˚
The authors wish to thank Umicore for generous gifts
of rhodium. This work was supported in part
(A.L.S.) by the Council for the Chemical Sciences of
the Netherlands Organization for Scientific Research
(CW-NWO).
hydroxyl
H coordinates. R1 = 0.0250, wR2 = 0.0625,
S = 1.049. Residual density in the range ꢀ0.57,
3
˚
0.33 e A . Crystallographic data (excluding structure fac-
tors) for the structure in this paper has been deposited
with the Cambridge Crystallographic Data Centre as
supplementary publication number CCDC 288639. Copies
of the data can be obtained, free of charge, on application
to CCDC, 12 Union Road, Cambridge CB2 IEZ, UK [fax:
+44(0)-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk].
11. Spek, A. L. J. Appl. Cryst. 2003, 36, 7–13.
12. Nieke, E.; Westermann, H. Synthesis 1988, 4, 330.
13. For related phosphines–phosphites see for example: (a)
Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am.
Supplementary data
Electronic supplementary information (ESI) available:
A listing of experimental procedures and crystallo-
graphic data. Supplementary data associated with this
article can be found, in the online version, at
´
´
Chem. Soc. 1993, 115, 7033–7034; (b) Suarez, A.; Mendez-
Rojas, M. A.; Pizzano, A. Organometallics 2002, 21, 4611–
4621; (c) Baker, M. J.; Pringle, P. J. Chem. Soc., Chem.
Commun. 1993, 314–316; (d) Kranich, R.; Eis, K.; Geis,
References and notes
O.; Muhle, S.; Bats, J. W.; Schmalz, H.-G. Chem. Eur. J.
¨
1. Ma¨rkl, G. Angew. Chem. 1966, 78, 907–908.
2. Ashe, A. J., III. J. Am. Chem. Soc. 1971, 93, 3293–3295.
3. (a) Le Floch, P. In Phosphorus–Carbon Heterocyclic
Chemistry: The Rise of a New Domain; Mathey, F., Ed.;
Pergamon: Palaiseau, 2001; pp 485–533; (b) Mathey, F.
Angew. Chem., Int. Ed. 2003, 42, 1578–1604.
4. Van Leeuwen, P. W. N. M. In Homogeneous Catalysis—
Understanding the Art; Kluwer Academic, 2004.
5. DiMauro, E. F.; Kozlowski, M. C. J. Chem. Soc., Perkin
Trans. 1 2002, 439–444.
2000, 6, 2874–2894.
14. Huttenloch, O.; Laxman, E.; Waldmann, H. Chem. Eur. J.
2002, 8, 4767–4780.
15. The formation of polynuclear species with bridging
ligands cannot be excluded. However, the presence of
more than one species should be expected in this case.
16. See for example: Tang, W.; Zhang, X. Chem. Rev. 2003,
103, 3029–3069, and references cited therein.
17. Reetz, M. T.; Mehler, G. Angew. Chem., Int. Ed. 2000, 39,
3889–3890.