On the contrary, the compounds with lower transfection
efficiency show markedly different behaviours on the Langmuir
trough, e.g. solid-like behaviour (2 and 5) and first-order phase
transitions (2 and 4) (Fig. 4b).23 The longer core of 2 and the larger
lipophilic heads of 4 and 5 make it impossible for a dimerisation
to occur. These molecules therefore have a critical packing factor
greater than 1, which does not favour the formation of films or
membranes. Indeed, BAM observations reveal the presence of
three-dimensional supramolecular architectures in the “films” of
compounds 2, 3 and 5. Compound 4 has a transition to some
undetermined supramolecular organisation that is not a bilayer.
BAM can only hint at such supramolecular architectures through
the observation of uneven or optically heterogeneous films and
getting a definitive proof would require additional experiments
such as cryo-transmission electron microscopy (TEM) or small
angle X-ray scattering. Still, a reasonable hypothesis based on
our observations and on the molecular architecture would be that
compounds 2–5 form micelles.
In conclusion, we have presented the effect of rational structural
modifications on the transfection activity of small amphiphilic
dendrimers. A clear sensitivity to steric requirements of the
lipophilic dendron was observed. Within this first library, every
change that has an effect on the packing ability clearly lowers the
transfection efficiency. On the other hand, small alterations to the
cationic dendron structure have limited impact on the biological
activity in comparison to lead compound 1.
1994, 269, 2550; (b) G. Byk, C. Dubertret, V. Escriou, M. Frederic, G.
Jaslin, R. Rangara, B. Pitard, J. Crouzet, P. Wils, B. Schwartz and D.
Scherman, J. Med. Chem., 1998, 41, 224; (c) C. McGregor, C. Perrin,
M. Monck, P. Camilleri and A. J. Kirby, J. Am. Chem. Soc., 2001, 123,
6215; (d) M. Castro, D. Griffiths, A. Patel, N. Pattrick, C. Kitson and
M. Ladlow, Org. Biomol. Chem., 2004, 2, 2814.
3 T. Segura and L. D. Shea, Annu. Rev. Mater. Res., 2001, 31, 25.
4 (a) T. Merdan, J. Kopecek and T . Kissel, Adv. Drug Delivery Rev., 2002,
54, 715; (b) U. Boas and P. M. H. Heegaard, Chem. Soc. Rev., 2004, 33,
43.
5 D. Joester, M. Losson, R. Pugin, H. Heinzelmann, E. Walter, H. P.
Merkle and F. Diederich, Angew. Chem., Int. Ed., 2003, 42, 1486.
6 (a) Y. V. Mahidhar, M. Rajesh and A. Chaudhuri, J. Med. Chem.,
2004, 47, 3938; (b) M. Sainlos, M. Hauchecorne, N. Oudrhiri, S.
Zertal-Zidani, A. Aissaoui, J.-P. Vigneron, J.-M. Lehn and P. Lehn,
ChemBioChem, 2005, 6, 1023.
7 (a) D. D. Lasic, H. Strey, M. C. A. Stuart, R. Podgornik and P. M.
Frederik, J. Am. Chem. Soc., 1997, 119, 832; (b) J. O. Ra¨dler, I. Koltover,
T. Salditt and C. R. Safinya, Science, 1997, 275, 810; (c) I. M. Hafez,
N. Maurer and P. R. Cullis, Gene Ther., 2001, 8, 1188; (d) P. C. Bell, M.
Bergsma, I. P. Dolbnya, W. Bras, M. C. A. Stuart, A. E. Rowan, M. C.
Feiters and J. B. F. N. Engberts, J. Am. Chem. Soc., 2003, 125, 1551.
8 J. H. Jung, S. Shinkai and T. Shimizu, Chem. Mater., 2003, 15, 2141.
9 P. L. Yeagle, Biochim. Biophys. Acta, 1985, 822, 267.
10 (a) J. N. Israelachvili, in Intermolecular and Surface Forces, 2nd edn,
Academic Press, London, 1991, pp. 341–393; (b) K. Hiramatsu, K.
Kameyama, R. Ishiguro, M. Mori and H. Hayase, Bull. Chem. Soc.
Jpn., 2003, 76, 1903.
11 D. Vollhardt, G. Czichocki and R. Rudert, Colloids Surf., A, 1993, 76,
217.
12 T. Hikota, M. Nakamura, S. Machida and K. Meguro, J. Am. Oil Chem.
Soc., 1971, 48, 784.
13 M. Scarzello, J. Smisterova´, A. Wagenaar, M. C. A. Stuart, D. Hoekstra,
J. B. F. N. Engberts and R. Hulst, J. Am. Chem. Soc., 2005, 127, 10420.
14 (a) A. Ahmad, H. M. Evans, K. Ewert, C. X. George, C. E. Samuel and
C. R. Safinya, J. Gene Med., 2005, 7, 739; (b) K. Miyata, Y. Kakizawa,
N. Nishiyama, A. Harada, Y. Yamasaki, H. Koyama and K. Kataoka,
J. Am. Chem. Soc., 2004, 126, 2355.
Acknowledgements
We gratefully acknowledge financial support from the NCCR
“Nanoscale Science”, NSERC “National Science and Engineering
Research Council of Canada” and the German “Fonds der
Chemischen Industrie”. We thank Myriam Losson and Raphae¨l
Pugin of the CSEM Neuchaˆtel for providing the Langmuir
isotherm of reference compound 1.
15 (a) D. Fischer, T. Bieber, Y. Li, H.-P. Elsasser and T. Kissel, Pharma.
Res., 1999, 16, 1273; (b) J. Haensler and F. C. Szoka, Jr., Bioconjugate
Chem., 1993, 4, 372; (c) A. U. Bielinska, C. Chen, J. Johnson and J. R.
Baker, Bioconjugate Chem., 1999, 10, 843; (d) A. Kichler, J. Gene Med.,
2004, 6, S3; (e) B. H. Zinselmeyer, S. P. Mackay, A. G. Schatzlein and
I. F. Uchegbu, Pharm. Res., 2002, 19, 960.
16 (a) Y. Xu and F. C. Szoka, Jr., Biochemistry, 1996, 35, 5616; (b) J.-P.
Behr, Chimia, 1997, 51, 34.
Notes and references
17 D. Joester, V. Gramlich and F. Diederich, Helv. Chim. Acta, 2004, 87,
2896.
‡ In comparison to the original studies,5 the HeLa cell line was used
instead of HEK293 cells and the transfection efficiency was evaluated
using FACS. Consequently, the absolute values for transfection efficiency
of reference vector 1 are higher in the present study.
§ The unitless CE ratio is defined as the number of positive charges on
the dendrimers divided by the number of negative charges present on the
plasmid DNA. Based on an average molecular weight of 666 g mol−1 per
base pair (bp), 1 lg of DNA is assumed to carry 3 nmol of negative charges.
18 S. Li, X. Gao, K. Son, F. Sorgi, H. Hofland and L. Huang, J. Controlled
Release, 1996, 39, 373.
19 H. Farhood, N. Serbina and L. Huang, Biochim. Biophys. Acta, 1995,
1235, 289.
20 J. A. Heyes, D. Niculescu-Duvaz, R. G. Cooper and C. J. Springer,
J. Med. Chem., 2002, 45, 99.
21 N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J. W.
Weener, E. W. Meijer, W. Paulus and R. Duncan, J. Controlled Release,
2000, 65, 133.
1 D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur,
E. J. Bergey, P. N. Prasad and M. K. Stachowiak, Proc. Natl. Acad. Sci.
U. S. A., 2005, 102, 11539.
22 S. Fuchs, T. Kapp, H. Otto, T. Scho¨neberg, P. Franke, R. Gust and
A. D. Schlu¨ter, Chem.–Eur. J., 2004, 10, 1167.
23 Compound 3 is poorly soluble in chloroform, very soluble in water and
could not give a reproducible isotherm.
2 (a) J. H. Felgner, R. Kumar, C. N. Sridhar, C. J. Wheeler, Y. J. Tsai,
R. Border, P. Ramsey, M. Martin and P. L. Felgner, J. Biol. Chem.,
This journal is
The Royal Society of Chemistry 2006
Org. Biomol. Chem., 2006, 4, 766–769 | 769
©