C O M M U N I C A T I O N S
Scheme 1 a
a Conditions: (a) H2, Pd/CaCO3/Pb, THF; (b) NaN3, nBu4NI, DMF, 90% (2 steps); (c) p-MeOC6H4CH2Cl, nBu4NI, K2CO3, CH3CN, 85%; (d) Me3P,
i
THF/H2O; (e) MeS(Cl)CdNMbs, Pr2NEt, CH3CN, 72% (2 steps); (f) Tf2O, C5H5N, DMAP, CH2Cl2; (g) NaN3, DMF, -15 °C, 70% (2 steps); (h)
t
(NH4)2Ce(NO3)6, BuOH/CH2Cl2, 74%; (i) KOtBu, Cl2CdNMbs; then (Me3Si)2NH, 70% (+20% of 6); (j) aq. CH3CN, 70 °C, 95%; (k) Me3P, THF/H2O;
(l) AgNO3, Et3N, CH3CN, 65% (2 steps); (m) Cl3CC(O)NCO, THF/CH3CN, -78 °C; then K2CO3, MeOH, 82%; (n) 10 mol % of OsCl3, Oxone, Na2CO3,
EtOAc/CH3CN/H2O, 57%; (o) B(O2CCF3)3, CF3CO2H, 82%; (p) DCC, C5H5N‚HO2CCF3, DMSO, 70%. Mbs ) p-MeOC6H4SO2.
Supporting Information Available: Analytical data for all new
compounds. This material is available free of charge via the Internet
References
(1) (a) Lehane, L. Paralytic Shellfish Poisoning: A ReView. National Office
of Animal and Plant Health, Agriculture, Fisheries and Forestry, Canberra,
Australia, 2000. (b) Kao, C. Y.; Levinson, S. R. Tetrodotoxin, Saxitoxin,
Figure 2. The regioisomeric R-ketol 12 gives an undesired result.
and the Molecular Biology of the Sodium Channel; New York Academy
of Sciences: New York, 1986.
efforts to reverse this selectivity proved successful, as the use of
catalytic OsCl3 (10 mol %), Oxone, and Na2CO3 gave rise to 57%
yield of the desired product 11 as a single stereoisomer. Rather
remarkably, <5% of 13 is generated under these conditions. The
interconversion of the two isomeric products when treated with acid
does not occur, and thus it appears that selectivity in this reaction
is kinetic in origin. While a cogent explanation for these contrasting
discoveries cannot be offered at this time, the end result advanta-
geously positions the proposed route for completion.
(2) Schantz, E. J.; Mold, J. D.; Stanger, D. W.; Shavel, J.; Riel, F. J.; Bowden,
J. P.; Lynch, J. M.; Wyler, R. S.; Riegel, B.; Sommer, H. J. Am. Chem.
Soc. 1957, 79, 5230-5235.
(3) (a) Schantz, E. J.; Ghazarossian, V. E.; Schnoes, H. K.; Strong, F. M.;
Springer, J. P.; Pezzanite, J. O.; Clardy, J. J. Am. Chem. Soc. 1975, 97,
1238-1239. (b) Bordner, J.; Thiessen, W. E.; Bates, H. A.; Rapoport, H.
J. Am. Chem. Soc. 1975, 97, 6008-6012.
(4) (a) Tanino, H.; Nakata, T.; Kaneko, T.; Kishi, Y. J. Am. Chem. Soc. 1977,
99, 2818-2819. (b) Kishi, Y. Heterocycles 1980, 14, 1477-1495.
(5) (a) Jacobi, P. A.; Martinelli, M. J.; Polanc, S. J. Am. Chem. Soc. 1984,
106, 5594-5598. (b) Martinelli, M. J.; Brownstein, A. D.; Jacobi, P. A.;
Polanc, S. Croat. Chem. Acta 1986, 59, 267-295.
(6) Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Sinauer:
Sunderland, MA, 2001.
To deliver the STX core from 11 in a manner most efficient,
conditions were sought to effect simultaneous cyclization of the
five-membered ring guanidine and Mbs deprotection. Such was the
case when 11 was treated with B(O2CCF3)3, generating the known
product, â-saxitoxinol, in 82% yield.18 A two-step sequence begin-
ning with the nine-membered ring 10 and ending with the fully
assembled tricyclic frame of STX thus gives form to our initial
retrosynthetic proposal. Finally, exposure of â-saxitoxinol to
oxidative conditions previously described afforded the desired guanid-
inium poison.19 Reverse-phase HPLC, with perfluorobutyric acid
added to the eluent, gave pure samples of the synthetic material as
(7) (a) Strichartz, G. R.; Hall, S.; Magnani, B.; Hong, C. Y.; Kishi, Y.; Debin,
J. A. Toxicon 1995, 33, 723-737. (b) Tikhonov, D. B.; Zhorov, B. S.
Biophys. J. 2005, 88, 184-197. (c) Choudhary, G.; Shang, L.; Li, X.;
Dudley, S. C. Biophys. J. 2002, 83, 912-919.
(8) Shimizu, Y.; Hsu, C. P.; Genenah, A. J. Am. Chem. Soc. 1981, 103, 605-
609.
(9) For an example of R-ketol formation followed by transannular cyclization,
see: Vedejs, E.; Galante, R. J.; Goekjian, P. G. J. Am. Chem. Soc. 1998,
120, 3613-3622.
(10) Fleming, J. J.; Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2003, 125,
2028-2029.
(11) (R)-Glycerol acetonide was purchased from Oakwood Products, Inc.
(12) Analogous reagents have been described for guanidine synthesis. See:
Bosin, T. R.; Hanson, R. N.; Rodricks, J. V.; Simpson, R. A.; Rapoport,
H. J. Org. Chem. 1973, 38, 1591-1600.
the bis-C3F7CO2 salt.20 This material matched the physical data
-
(13) Mercha´n, F. L.; Gar´ın, J.; Tejero, T. Synthesis 1982, 984-986.
(14) Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc.
2001, 123, 6935-6936.
of natural (+)-STX in all respects. In addition, electrophysiology
measurements against Nav1.4 channels overexpressed in CHO cells
furnished an IC50 value of 5 nM, consistent with literature re-
ports.1b,7c,21 The completed work, while highlighting several method-
ological inventions, now serves as an entry point for the construction
of unique small molecules able to modify Na+ channel function.
Acknowledgment. The authors wish to thank Brian Andresen and
Justin Litchfield for their helpful contributions. J.J.F. is grateful to
Amgen for graduate fellowships (2002, 2004). This work has been
supported by a grant from the NIH.
(15) Fukada, N.; Takano, M.; Nakai, K.; Kuboike, S.; Takeda, Y. Bull. Chem.
Soc. Jpn. 1993, 66, 148-152.
(16) Kocˇovsky´, P. Tetrahedron Lett. 1986, 5521-5524.
(17) (a) Plietker, B. J. Org. Chem. 2004, 69, 8287-8296. (b) Murahashi, S.
I.; Naota, T.; Hanaoka, H. Chem. Lett. 1993, 1767-1770. (c) Miescher,
K.; Schmidlin, J. U.S. Patent 2,668,816, 1954.
(18) Pless, J.; Bauer, W. Angew. Chem., Int. Ed. Engl. 1973, 12, 147-148.
(19) Koehn, F. E.; Ghazarossian, V. E.; Schantz, E. J.; Schnoes, H. K.; Strong,
F. M. Bioorg. Chem. 1981, 10, 412-428.
(20) Negri, A.; Stirling, D.; Quilliam, M.; Blackburn, S.; Bolch, C.; Burton,
I.; Eaglesham, G.; Thomas, K.; Walter, J.; Willis, R. Chem. Res. Toxicol.
2003, 16, 1029-1033.
Note Added after ASAP Publication. After this paper published
ASAP, structure 1 in Figure 1 was corrected. The corrected version
was published ASAP on March 3, 2006.
(21) Moran, O.; Picollo, A.; Conti, F. Biophys. J. 2003, 84, 2999-3006.
JA0608545
9
J. AM. CHEM. SOC. VOL. 128, NO. 12, 2006 3927