SCHEME 1. Synthesis of O-Benzyl-Protected
Diarylmethanol 4 from 6-Bromopiperonal 1
Unusual Transformation of the Diarylmethanol
Derivative into an Unknown
1,2,3,6,7,10-Hexahydroxylated Anthracene System
Piotr Bałczewski,*,†,‡ Marek Koprowski,†
Agnieszka Bodzioch,† Bernard Marciniak,‡ and
Ewa Ro´z˘ycka-Sokołowska‡
Department of Heteroorganic Chemistry, Center of Molecular
and Macromolecular Studies, Polish Academy of Sciences,
90-363 -Lo´dz´, Sienkiewicza 112, Poland, and Institute of
Chemistry and EnVironmental Protection, Jan Długosz
UniVersity of Cze¸stochowa, 42-200 Cze¸stochowa,
Armii Krajowej 13/15, Poland
butyl groups [2-tert-butyl-9,10-diphenylanthracene, 2-tert-butyl-
9,10-di(4-tert-butylphenyl)anthracene],8-10 9,10-bis(3′,5′-diaryl)-
phenylanthracene (JBEM),11 rotaxane of methyl-exo-pyridinean-
thracene,12,13 2,3,6,7-tetramethyl-9,10-dinaphthylanthracene
(TMADN),14 2,6-bis(4-trifluoromethylphenyl)anthracene,15 and
2,6-dithienylanthracene,15 have been intensely investigated as
light-emitting materials in multilayer electroluminescence di-
odes.
ReceiVed December 19, 2005
In investigations on materials for molecular electronics, we
needed diarylmethanols with the protected OH function and free
benzaldehyde group starting from 6-bromopiperonal 1. Because
an attempt to introduce the 3,4,5-trimethoxyphenyl group in a
one-pot procedure using the Kuroda et al. protocol16 gave a
complex mixture of unidentified compounds, a protection of
the aldehyde group in 1 with ethylene glycol to give 2 was
necessary (Scheme 1).
10-Benzyloxy-1,2,3-trimethoxy-6,7-(methylene-1,3-dioxy)anthracene
as a potential material for molecular electronics was syn-
thesized from the O-benzyl-protected diarylmethanol deriva-
tive containing the 1,3-dioxyethylene acetal function via a
one-pot procedure under acidic conditions (1 N HCl,
methanol, 60 h) in 60% yield. The replacement of methanol
for benzene resulted in hydrolysis of the acetal function in
96% yield.
Because of varying reports17-19 concerning the reaction time
(from 8 to 48 h for reactions of a similar scale), the protection
reaction was monitored with 1H NMR. In our hands, it required
26 h for completion to give 2 on a multigram scale and in almost
100% purity. The Br/Li exchange reaction in the latter with
n-BuLi/n-hexane in a THF solution to give 2-Li followed by
condensation with 3,4,5-trimethoxybenzaldehyde afforded the
(5) Liu, S. W.; Huang, C. A.; Lee, J. H.; Yang, K. H.; Chen, C. C.;
Chang, Y. Thin Solid Films 2004, 312-313, 453-454.
(6) Shi, J.; Tang, C. W. Appl. Phys. Lett. 2002, 80, 3201-3203.
(7) Liu, T. H.; Shen, W. J.; Balaganesan, B.; Yen, C. K.; Iou, C. Y.;
Chen, H. H.; Chen, C. H. Synth. Met. 2003, 137, 1033.
(8) Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 2001, 79, 3711-3713.
(9) Kim, Y. H.; Shin, D. C.; Kim, S. H.; Ko, C. H.; Yu, H. S.; Chea, Y.
S.; Kwon, S. K. AdV. Mater. 2001, 13, 1690-1693.
(10) Balaganesan, B.; Shen, W.-J.; Chen, C. H. Tetrahedron Lett. 2003,
44, 5747-5750.
Increasing interest in ultrapure and structurally perfect crystals
and thin layers of π-conjugated molecular semiconductors, such
as polycyclic aromatic hydrocarbons (anthracene, tetracene, and
pentacene), is connected with their potential application as active
elements in new generations of relatively cheap optoelectronic
devices, e.g., the field-effect transistors and light-emitting
diodes.1-4 Physical properties of these compounds, unlike
traditional inorganic semiconducting materials requiring multiple
processing steps, may be simply tailored through chemical
modification. Some anthracene derivatives prepared as thin
layers, such as 9,10-di-(2-naphthyl)anthracene (ADN),5-7 9,-
10-diphenylanthracene (DPA) and its derivatives containing tert-
(11) Jiang, X.-Y.; Zhang, Z.-L.; Zheng, X.-Y.; Wu, Y.-Z.; Xu, S.-H. Thin
Solid Films 2001, 401, 251-254.
(12) Giro, G.; Cocchi, M.; Fattori, V.; Gadret, G.; Ruani, G.; Cavallini,
M.; Biscarini, F.; Zamboni, R.; Loontjens, T.; Thies, J.; Leigh, D. A.;
Morales, A. F.; Mahrt, R. F. Synth. Met. 2001, 122, 63-65.
(13) Gadret, G.; Ruani, G.; Cavallini, M.; Biscarini, F.; Murgia, M.;
Zamboni, R.; Giro, G.; Cocchi, M.; Fattori, V.; Loontjens, T.; Thies, J.;
Leigh, D. A.; Morales, A. F.; Mahrt, R. F. Appl. Surf. Sci. 2001, 175-176,
369-373.
(14) Kan, Y.; Wang, L.; Gao, Y.; Duan, L.; Wu, G.; Qin, Y. Synth. Met.
2004, 141, 245-249.
(15) Ando, S.; N, J.-I.; Fujiwara, E.; Tada, H.; Inoue, Y.; Tokito, S.;
Yamashita, Y. Chem. Mater. 2005, 17, 1261-1264.
(16) Kuroda, T.; Takahashi, M.; Kondo, K.; Iwasaki, T. J. Org. Chem.
1995, 60, 9560.
* To whom correspondence should be addressed. Phone: +48 42 6803202.
Fax: +48 42 6847 126.
† Polish Academy of Sciences.
‡ Jan Długosz University of Cze¸stochowa.
(1) Karl, N. Introduction. In Organic Electronic Materials; Farchioni,
R., Grosso, G., Eds.; Springer-Verlag: Berlin Heidelberg, 2001; Chapter
6, pp 215-239.
(2) Belaid, R.; Barhoumi, T.; Hachani, L.; Hassine, L.; Bouchriha, B.;
Synth. Met. 2002, 131, 23-30.
(17) Bogucki, D. E.; Charlton, J. L. J. Org. Chem. 1995, 60, 588-593.
(18) Arnold, B. J.; Mellows, S. M.; Sammes, P. G. J. Chem. Soc. Perkin
Trans. 1, 1973, 1266-1270.
(19) Geen, G. R.; Mann, I. S.; Mullane, V.; McKillop, A. Tetrahedron
1988, 54, 9875-9894.
(3) Gundlach, D. J.; Nichols, J. A.; Zhou, L.; Jackson, T. N. Appl. Phys.
Lett. 2002, 80, 2925-2927.
(4) Herwig, P. T.; Mu¨llen, K. AdV. Mater. 1999, 11, 480-483.
10.1021/jo052599x CCC: $33.50 © 2006 American Chemical Society
Published on Web 03/04/2006
J. Org. Chem. 2006, 71, 2899-2902
2899