LETTER
Synthesis of Enantiopure Fluorinated Prolines
545
(6) Hodges, J. A.; Reines, R. T. J. Am. Chem. Soc. 2003, 125,
9262.
(7) (a) Paolella, D. N.; Gruskin, E. A.; Buechter, D. D. PCT Int.
Appl. WO 2000015789, 2000. (b) Fukui, H.; Shibata, T.;
Nakano, J.; Naita, T.; Senda, N.; Maejima, T.; Watanuki, Y.;
Aryoshi, T. JP 07300471, 1995.
(8) Bernardi, L.; Bonini, B. F.; Comes-Franchini, M.; Fochi, M.;
Folegatti, M.; Grilli, S.; Mazzanti, A.; Ricci, A.
Tetrahedron: Asymmetry 2004, 15, 245.
(9) McElroy, K. T.; Purrington, S.; Bumgardner, C. L.; Burgess,
J. P. J. Fluorine Chem. 1999, 95, 117.
In conclusion, we have developed a mild and general
method for the efficient regio- and stereoselective synthe-
sis of enantiopure pharmacologically important 3F-substi-
tuted prolines. These fluorinated heterocycles could be
used for the creation of new biomaterials for medicinal
applications.6,7
This approach offers an advantage over the direct nucleo-
philic fluorination of hydroxyl groups, which often gives
side products and requires additional steps of protection–
deprotection in the case of polyhydroxylated compounds.
Moreover, this protocol overcomes the problems
associated17 with the difficult handling and toxicity of the
most commonly used nucleophilic fluorinating reagents.
The applications in other target-oriented 1,3-DC with flu-
orinated olefins calls for other studies in our laboratories
and will be reported in due course.
(10) A solution of BocNHglycine (3.5 g, 20.2 mmol) in 50 mL of
CH2Cl2 was cooled to 0 °C. N,N-dicyclohexylcarbodiimide
(4.18 g, 20.2 mmol) was added in several portions and a
white precipitate formed quickly. After 10 min, L-menthol
was added (3.78 g, 24.2 mmol) in 60 mL of CH2Cl2 and
DMAP (110 g, 0.9 mmol). The mixture was stirred at r.t. for
24 h. After addition of H2O (15 mL), the organic phase was
extracted with Et2O and dried over MgSO4. The residue was
purified on column chromatography on silica gel (PE–Et2O,
2:1) to afford the L-menthol ester (5.4 g, 86%) as a yellow
oil. [a]D20 –46.5 (c 0.99, MeOH). 1H NMR (400 MHz,
CDCl3): d = 5.06 (s, 1 H), 4.70 (dt, 1 H, J = 12.3, 6.1 Hz),
3.83 (d, 2 H, J = 4.2 Hz), 1.98–1.90 (m, 1 H), 1.85–1.73 (m,
1 H), 1.67–1.59 (m, 2 H), 1.40 (s, 9 H), 1.37–1.29 (m, 1 H),
1.07–0.76 (m, 4 H), 0.85 (d, 3 H, J = 7.3 Hz), 0.84 (d, 3 H,
J = 7.3 Hz), 0.70 (d, 3 H, J = 6.6 Hz). 13C NMR (75.3 MHz,
CDCl3): d = 169.7, 155.4, 79.2, 75.4, 46.8, 42.5, 40.7, 34.0,
31.3, 28.2, 26.1, 23.3, 21.9, 20.6, 16.2. MS (EI): m/e = 313
[M+]. Standard procedures for the removal of the Boc were
followed giving (1R,2S,5S)-2 as a yellow oil. [a]D20 –77.3 (c
0.50, MeOH). 1H NMR (300 MHz, CDCl3): d = 4.60 (dt, 1
H, J = 12.2, 6.1 Hz), 3.32 (s, 2 H), 2.28 (s, 2 H), 1.92–0.60
(18H). 13C NMR (75.3 MHz, CDCl3): d = 173.1, 74.3, 46.6,
43.3, 40.4, 33.8, 30.9, 25.8, 23.0, 21.5, 20.3, 15.9. MS (EI):
m/e = 213 [M+].
(11) For the condensation see ref. 4c and 4d. Starting from
(1R,2S,5S)-2 (860 mg, 4.0 mmol), Na2SO4 (3.2 g, 22.8
mmol) and PhCHO (0.4 mL, 4.0 mmol), 1.03 g (86%) of
(1R,2S,5S)-3a as a yellow oil were obtained. [a]D20 –54.0 (c
0.16, CH2Cl2). 1H NMR (300 MHz, CDCl3): d = 8.17 (s, 1
H), 7.67–7.63 (m, 2 H), 7.32–7.26 (m, 3 H), 4.66 (dt, 1 H,
J = 4.0, 11.3 Hz), 4.26 (s, 2 H), 1.93 (d, 1 H, J = 11.8 Hz),
1.84–1.73 (m, 1 H), 1.61–1.50 (m, 2 H), 1.44–1.24 (m, 2 H),
1.00–0.81 (m, 3 H), 0.77 (d, 6 H, J = 5.5 Hz), 0.64 (d, 3 H,
J = 7.3 Hz). 13C NMR (100.6 MHz, CDCl3): d = 169.4,
164.9, 136.4, 128.7, 128.6, 128.5, 74.6, 62.4, 47.3, 41.2,
34.4, 31.4, 26.6, 23.8, 22.1, 20.8, 16.6. MS (ESI): m/z = 324
[M+ + Na]. Starting from (1R,2S,5S)-2 (1.67 g, 7.8 mmol),
Na2SO4 (6.34 g, 44.6 mmol) and 4-CNC6H4CHO (1.03g, 7.8
mmol), 2.28 g (90%) of (1R,2S,5S)-3b as a yellow oil were
obtained. [a]D20 –42.4 (c 0.50, CH2Cl2). 1H NMR (300 MHz,
CDCl3): d = 8.33 (s, 1 H), 7.89 (d, 2 H, J = 8.6 Hz), 7.72 (d,
2 H, J = 8.6 Hz), 4.87 (dt, 1 H, J = 11.0, 4.3 Hz), 4.43 (s, 2
H), 2.09–0.70 (m, 18 H). 13C NMR (100.6 MHz, C6D6): d =
168.9, 163.1, 139.5, 132.5, 132.2, 129.4, 128.7, 118.4,
114.5, 75.0, 62.2, 47.3, 41.2, 34.3, 31.4, 26.7, 23.8, 22.1,
20.8, 16.6. MS (ESI): m/z = 349 [M+ + Na].
Acknowledgment
We acknowledge financial support by the National Project ‘Stereo-
selezione in Sintesi Organica. Metodologie ed Applicazioni’ 2002–
2004.
References and Notes
(1) (a) Tsuge, O.; Kanemasa, S. In Advances in Heterocyclic
Chemistry, Vol. 45; Katritzky, A. R., Ed.; Academic Press:
San Diego, 1989, 232. (b) Janasik, T.; Bergman, J. In
Progress in Heterocyclic Chemistry, Vol. 15; Gribble, G.
W.; Jaule, J. A., Eds.; Pergamon: Amsterdam, 2003, 140.
(2) (a) Pearson, W. H. In Studies in Natural Products Chemistry,
Vol. 1; Atta-Ur-Rahman, Ed.; Elsevier: New York, 1998,
323. (b) Grigg, R. Chem. Soc. Rev. 1987, 16, 89. (c) Lawin,
J. W. In 1,3-Dipolar Cycloaddition Chemistry, Vol. 1;
Padwa, A., Ed.; J. Wiley and Sons: New York, 1984, 653.
(3) (a) Jorgensen, K. A.; Gothelf, K. V. Chem. Rev. 1998, 98,
863. (b) Gothelf, K. V. In Cycloaddition Reaction in
Organic Synthesis; Kobayashi, S.; Jorgensen, K. V., Eds.;
Wiley-VCH: Weinheim, 2001, Chap. 6. (c) Najera, C.;
Sansano, J. M. Angew. Chem. Int. Ed. 2005, 44, 6272.
(4) (a) Synthetic Application of 1,3-Dipolar Cycloaddition
Chemistry Toward Heterocycles and Natural Products;
Padwa, A.; Pearson, W., Eds.; Wiley-VCH: Weinheim,
2002, 169. (b) Kanemasa, S. Synlett 2002, 1371.
(c) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc.
2002, 124, 13400. (d) Chen, C.; Xiaodong, L.; Schreiber, S.
J. Am. Chem. Soc. 2003, 125, 10174. (e) Nyerges, M.;
Bendell, D.; Arony, A.; Hibbs, D. E.; Coles, S. J.;
Hursthouse, M. B. Synlett 2003, 947.
(5) (a) Enantiocontrolled Synthesis of Fluoro-Organic
Compounds. Stereochemical Challenges and Biomedicinal
Targets; Soloshonok, V. A., Ed.; John Wiley and Sons, Inc.:
New York, 1999. (b) AsymmetricFluoroorganic Chemistry;
Ramachandran, P. V., Ed.; ACS Symposium Series:
Washington, DC, 2000. (c) Smart, B. E. Chemistry of
Organic Fluorine Compound: A Critical Review; Hudlicky,
M.; Pavlath, A. E., Eds.; ACS Monograph 187, American
Chemical Society: Washington, DC, 1995, 979. (d) Smart,
B. E. Organofluorine Chemistry: Principles and
(12) According to ref. 4c and 4d. Starting from 1 (212 mg, 1.8
mmol) and 3a (541 mg, 1.8 mmol), 565 mg (75%) of 4a,a¢
were obtained as mixture after column chromatography on
silica with CH2Cl2–EtOAc 200:1. After column
chromatography the two cycloadducts were subjected to
semi-preparative HPLC separation. HPLC (hexane–i-PrOH
gradient starting from 0.5% i-PrOH, to 11 min, then 1.05%
i-PrOH to 25 min, then 2.25% i-PrOH).
Commercial Applications; Banks, R. E.; Smart, B. E.;
Tatlow, J. C., Eds.; Plenum Publishing Corporation: New
York, 1994, 57. (e) Myers, A. G.; Barbay, J. K.; Zhong, B. J.
Am. Chem. Soc. 2001, 123, 7207.
Selected data for 4a,a¢.
Synlett 2006, No. 4, 543–546 © Thieme Stuttgart · New York