Gene Targeting of 7,8-LDS
8. Su, C., Sahlin, M., and Oliw, E. H. (1998) J. Biol. Chem. 273, 20744–20751
9. Lee, D. S., Nioche, P., Hamberg, M., and Raman, C. S. (2008) Nature 455,
363–368
to any of the listed enzymes, and the homology did not suggest
a specific catalytic activity. Further studies will be needed to
determine its function.
10. Jernere´n, F., Garscha, U., Hoffmann, I. M., and Oliw, E. H. (2010) Biochim.
Biophys. Acta, in press
The genome of M. oryzae contains over 120 CYP genes,
grouped with only a few members per family (5). It is conceiv-
able that 5,8-DiHODE could be formed by any of these P450s of
the suppressor mutant. We found, however, that 5,8-LDS (and
7,8-LDS) activities were present in the high speed supernatant
and negligible in the microsomal fraction, which seems to
exclude microsomal enzymes.
11. Su, C., and Oliw, E. H. (1996) J. Biol. Chem. 271, 14112–14118
12. Ho¨rnsten, L., Su, C., Osbourn, A. E., Garosi, P., Hellman, U., Wernstedt,
C., and Oliw, E. H. (1999) J. Biol. Chem. 274, 28219–28224
13. Garscha, U., and Oliw, E. H. (2008) FEBS Lett. 582, 3547–3551
14. Cristea, M., Osbourn, A. E., and Oliw, E. H. (2003) Lipids 38, 1275–1280
15. Tsitsigiannis, D. I., Kowieski, T. M., Zarnowski, R., and Keller, N. P. (2005)
Microbiology 151, 1809–1821
The P450 domain of 7,8-LDS contains several sequences
with homology to the PKA motif, Arg-Arg-Xaa-(Ser/Thr).
Phosphorylation of P450 at this motif by PKA has so far only
been found to reduce P450 activity without influence on prod-
uct specificity (48). Whether the oxylipin biosynthesis of the
⌬mac1 sum1–99 mutant can be attributed to post-translational
modification of 7,8-LDS merits further investigation.
16. Garscha, U., Jernere´n, F., Chung, D., Keller, N. P., Hamberg, M., and Oliw,
E. H. (2007) J. Biol. Chem. 282, 34707–34718
17. Garscha, U., and Oliw, E. H. (2009) J. Biol. Chem. 284, 13755–13765
18. Brodhun, F., Go¨bel, C., Hornung, E., and Feussner, I. (2009) J. Biol. Chem.
284, 11792–11805
19. Garscha, U., and Oliw, E. H. (2007) Anal. Biochem. 367, 238–246
20. Champe, S. P., and el-Zayat, A. A. E. (1989) J. Bacteriol. 171, 3982–3988
21. Dagenais, T. R., Chung, D., Giles, S. S., Hull, C. M., Andes, D., and Keller,
N. P. (2008) Infect. Immun. 76, 3214–3220
Mycelia of M. oryzae also oxidized medium and long chain
lus megaterium is the prototype microbiological fatty acid 2-
and 3-hydroxylase and fatty acid epoxygenase (49). Blast
search with CYP102 revealed three homologous hypothetical
enzymes (numbers 3–5) of the CYP505A family in M. oryzae.
Further studies will be needed to link CYP505 of M. oryzae to
fatty acid oxygenation in the same way as the terminal oxygen-
ases of Fusarium oxysporum were linked to CYP404 (50).
Recent studies of Talbot and co-workers (28) showed that per-
oxisomal -oxidation is essential for M. oryzae during appres-
sorium-mediated rice infection, and the lipid bodies of spores
may provide the fuel for the -oxidation.
22. Tsitsigiannis, D. I., and Keller, N. P. (2006) Mol. Microbiol. 59, 882–892
23. Cook, R. J. (2003) Physiol. Mol. Plant Pathol. 62, 73–86
24. Cannon, P. F. (1994) Systema Ascomycetum 13, 25–42
25. Talbot, N. J., and Foster, A. J. (2001) Adv. Bot. Res. 34, 263–287
26. Sesma, A., and Osbourn, A. E. (2004) Nature 431, 582–586
27. Thines, E., Weber, R. W., and Talbot, N. J. (2000) Plant Cell 12, 1703–1718
28. Wang, Z. Y., Soanes, D. M., Kershaw, M. J., and Talbot, N. J. (2007) Mol.
Plant Microbe Interact. 20, 475–491
29. Adachi, K., and Hamer, J. E. (1998) Plant Cell 10, 1361–1374
30. Mitchell, T. K., and Dean, R. A. (1995) Plant Cell 7, 1869–1878
31. Xu, J. R., and Hamer, J. E. (1996) Genes Dev. 10, 2696–2706
32. Park, G., Xue, C., Zheng, L., Lam, S., and Xu, J. R. (2002) Mol. Plant
Microbe Interact. 15, 183–192
33. Foster, A. J., Jenkinson, J. M., and Talbot, N. J. (2003) EMBO J. 22, 225–235
34. Ou, S. (1985) Rice Diseases, CAB International, Kew, UK
35. Choi, W., and Dean, R. A. (1997) Plant Cell 9, 1973–1983
36. Xu, J. R., Urban, M., Sweigard, J. A., and Hamer, J. E. (1997) Mol. Plant
Microbe Interact. 10, 187–194
In summary, we report the first studies on the biological
function of 7,8-LDS in M. oryzae, an important fungal grass
pathogen and model organism. We identified the 7,8-LDS gene
(MGG_13239) and determined the structure and mechanism of
formation of metabolites. Gene deletion showed that 7,8-LDS
was not critical for sporulation nor for rice infection. PKA,
which has profound effects on these processes, augmented for-
mation of two previously unrecognized oxylipins of M. oryzae,
37. Davis, L., Kuehl, M., and Battey, J. (1994) Basic Methods in Molecular
Biology, pp. 1–304, Appleton and Lange, Norwalk
38. Talbot, N. J. (2001) in Molecular and Cellular Biology of Filamentous
Fungi (N. Talbot, ed) pp. 25–26, Oxford University Press, Bath
39. Rho, H. S., Kang, S., and Lee, Y. H. (2001) Mol. Cells 12, 407–411
40. Carbone, I., and Kohn, L. M. (1999) Mycologia 91, 553–556
(5S,8R)-DIHODE and (10R)-HPODE. We conclude that M. 41. Oliw, E. H., Stark, K., and Bylund, J. (2001) Biochem. Pharmacol. 62, 407–415
42. Wadman, M. W., van Zadelhoff, G., Hamberg, M., Visser, T., Veldink,
oryzae can oxidize to 18:2n-6 to a more complex set of oxylipins
G. A., and Vliegenthart, J. F. (2005) Lipids 40, 1163–1170
than previously anticipated.
43. Oliw, E. H., Su, C., Skogstro¨m, T., and Benthin, G. (1998) Lipids 33, 843–852
44. Haslbeck, F., Grosch, W., and Firl, J. (1983) Biochim. Biophys. Acta 750,
185–193
REFERENCES
1. Wilson, R. A., and Talbot, N. J. (2009) Nat. Rev. Microbiol. 7, 185–195
2. Skamnioti, P., and Gurr, S. J. (2009) Trends Biotechnol. 27, 141–150
3. Ribot, C., Hirsch, J., Balzergue, S., Tharreau, D., Notte´ghem, J. L., Lebrun,
M. H., and Morel, J. B. (2008) J. Plant Physiol. 165, 114–124
4. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K.,
Orbach, M. J., Thon, M., Kulkarni, R., Xu, J. R., Pan, H., Read, N. D., Lee,
Y. H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes,
D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W., Harding, M., Kim,
S., Lebrun, M. H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L. J.,
Nicol, R., Purcell, S., Nusbaum, C., Galagan, J. E., and Birren, B. W. (2005)
Nature 434, 980–986
45. Oh, Y., Donofrio, N., Pan, H., Coughlan, S., Brown, D. E., Meng, S., Mitch-
ell, T., and Dean, R. A. (2008) Genome Biol. 9, R85
46. Soanes, D. M., Alam, I., Cornell, M., Wong, H. M., Hedeler, C., Paton,
N. W., Rattray, M., Hubbard, S. J., Oliver, S. G., and Talbot, N. J. (2008)
PLoS ONE 3, e2300
47. Huber, S. M., Lottspeich, F., and Ka¨mper, J. (2002) Mol. Genet. Genomics
267, 757–771
48. Oesch-Bartlomowicz, B., and Oesch, F. (2003) Arch. Biochem. Biophys.
409, 228–234
49. Capdevila, J. H., Wei, S., Helvig, C., Falck, J. R., Belosludtsev, Y., Truan, G.,
Graham-Lorence, S. E., and Peterson, J. A. (1996) J. Biol. Chem. 271,
22663–22671
5. Deng, J., Carbone, I., and Dean, R. A. (2007) BMC Evol. Biol. 7, 30
6. Brodowsky, I. D., Hamberg, M., and Oliw, E. H. (1992) J. Biol. Chem. 267,
14738–14745
7. Hamberg, M., Zhang, L. Y., Brodowsky, I. D., and Oliw, E. H. (1994) Arch.
Biochem. Biophys. 309, 77–80
50. Kitazume, T., Takaya, N., Nakayama, N., and Shoun, H. (2000) J. Biol.
Chem. 275, 39734–39740
51. Couch, B. C., and Kohn, L. M. (2002) Mycologia 94, 683–693
5316 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 285•NUMBER 8•FEBRUARY 19, 2010