Communication
ChemComm
9 U. Wietelmann and J. Klett, Z. Anorg. Allg. Chem., 2018, 644,
194–204.
10 For key contribution in the development of organolithium-based
cross-coupling please see; (a) S. Murahashi, M. Yamamura,
K. Yanagisawa, N. Mita and K. Kondo, J. Org. Chem., 1979, 44,
2408–2417; (b) A. Nagaki, A. Kenmoku, Y. Moriwaki, A. Hayashi and
J. Yoshida, Angew. Chem., Int. Ed., 2010, 49, 7543–7547;
(c) E.-i. Negishi, Angew. Chem., Int. Ed., 2011, 50, 6738–6764;
(d) A. B. Smith, W.-S. Kim and R. Tong, Org. Lett., 2010, 12, 588–591.
11 M. Giannerini, M. Fananas-Mastral and B. L. Feringa, Nat. Chem.,
2013, 5, 667–672.
12 (a) R. Luisi and V. Capriati, Lithium Compounds in Organic Synthesis,
Wiley-VCH, Germany, 2014; (b) Z. Rappoport and I. Marek, The
chemistry of organolithium compounds, John Wiley & Sons, 2004.
˜
13 J. Mateos-Gil, A. Mondal, M. Castineira Reis and B. L. Feringa,
Angew. Chem., Int. Ed., 2020, 59, 7823–7829.
14 D. Heijnen, F. Tosi, C. Vila, M. C. A. Stuart, P. H. Elsinga,
W. Szymanski and B. L. Feringa, Angew. Chem., Int. Ed., 2017, 56,
3354–3359.
15 D. Heijnen, J.-B. Gualtierotti, V. Hornillos and B. L. Feringa, Chem. –
Eur. J., 2016, 22, 3991–3995.
Scheme 3 Potential applications of the cross-coupling methodology.
A comparison of the developed protocol with reported syntheses of
different drugs.
16 E. B. Pinxterhuis, M. Giannerini, V. Hornillos and B. L. Feringa, Nat.
Commun., 2016, 7, 11698.
17 G. Dilauro, A. Francesca Quivelli, P. Vitale, V. Capriati and
F. M. Perna, Angew. Chem., Int. Ed., 2019, 58, 1799–1802.
18 N. Sinha, D. Heijnen, B. L. Feringa and M. G. Organ, Chem. – Eur. J.,
2019, 25, 9180–9184.
19 J. Buter, D. Heijnen, C. Vila, V. Hornillos, E. Otten, M. Giannerini,
A. J. Minnaard and B. L. Feringa, Angew. Chem., Int. Ed., 2016, 55,
3620–3624.
20 H. Helbert, P. Visser, J. G. H. Hermens, J. Buter and B. L. Feringa,
Nat. Catal., 2020, 3, 664–671.
21 F. Proutiere, E. Lyngvi, M. Aufiero, I. A. Sanhueza and
F. Schoenebeck, Organometallics, 2014, 33, 6879–6884.
22 (a) R. A. Sheldon, Green Chem., 2017, 19, 18–43; (b) M. Poliakoff,
J. M. Fitzpatrick, T. R. Farren and P. T. Anastas, Science, 2002, 297,
807–810; (c) J. B. Zimmerman, P. T. Anastas, H. C. Erythropel and
W. Leitner, Science, 2020, 367, 397–400.
23 R. A. Sheldon, Green Chem., 2017, 19, 18–43.
24 K. Izutsu, Acid-base Dissociation Constants in Dipolar Aprotic Solvents,
Blackwell Scientific Publications, 1990.
25 E. B. Pinxterhuis, P. Visser, I. Esser, J.-B. Gualtierotti and
B. L. Feringa, Angew. Chem., Int. Ed., 2018, 57, 9452–9455.
26 M. S. M. Pearson-Long, F. Boeda and P. Bertus, Adv. Synth. Catal.,
2017, 359, 179–201.
under mild conditions. Due to the remarkable functional group
tolerance of the transformation, the alkynylation of benzyl
bromides with lithium acetylides might likely find applications
in the late-stage functionalization of (photo-)pharmacophores,
natural products, materials and pharmaceuticals.
This work was financially supported by ERC (advanced grant
No. 694345) and the Dutch Ministry of Education, Culture and
Science (Gravitation program No. 024.001.035) to B. L. F and
N. W. O. (Grant Number: 718,015,004) to A. M. D. Kolarski is
acknowledged for providing (E)-1-(4-(bromomethyl)-phenyl)-2-
phenyldiazene. R. Sneep is acknowledged for performing the
high-resolution mass spectrometry.
Conflicts of interest
The authors declare no conflict of interest.
27 C. Sandford and V. K. Aggarwal, Chem. Commun., 2017, 53,
5481–5494.
1 B. Liegault, J.-L. Renaud and C. Bruneau, Chem. Soc. Rev., 2008, 37, 28 W. A. Velema, W. Szymanski and B. L. Feringa, J. Am. Chem. Soc.,
Notes and references
´
290–299.
2014, 136, 2178–2191.
29 H. Chen, R. Zhang, H. Gao, H. Cheng, H. Fang and X. Cheng, Dyes
Pigm., 2018, 149, 512–520.
2 X. Zhu, J. Liu and W. Zhang, Nat. Chem. Biol., 2015, 11, 115–120.
3 J. Liu, J. W. Y. Lam and B. Z. Tang, Chem. Rev., 2009, 109, 5799–5867.
4 (a) O. Di Pietro, N. Alencar, G. Esteban, E. Viayna, N. Szałaj, 30 (a) R. P. Kaiser, F. Hessler, J. Mosinger, I. Cısarova and M. Kotora,
´
ˇ ´
´
´
´
´
´
J. Vazquez, J. Juarez-Jimenez, I. Sola, B. Perez, M. Sole, M. Unzeta,
Chem. – Eur. J., 2015, 21, 13577–13582; (b) M. Mandal, S. Sakthivel
and R. Balamurugan, J. Org. Chem., 2021, 86, 333–351.
˜
D. Munoz-Torrero and F. J. Luque, Bioorg. Med. Chem., 2016, 24,
4835–4854; (b) F. Li, Y. Park, J.-M. Hah and J.-S. Ryu, Bioorg. Med. 31 D. Astruc, E. Boisselier and C. Ornelas, Chem. Rev., 2010, 110,
Chem. Lett., 2013, 23, 1083–1086. 1857–1959.
5 (a) M. Qian and E.-i. Negishi, Tetrahedron Lett., 2005, 46, 2927–2930; 32 J. A. Fernandez-Salas, A. J. Eberhart and D. J. Procter, J. Am. Chem.
´
´
(b) I. Perez, J. P. Sestelo and L. A. Sarandeses, J. Am. Chem. Soc., 2001,
Soc., 2016, 138, 790–793.
˜
´
´
123, 4155–4160; (c) M. Pena-Lopez, M. Ayan-Varela, L. A. Sarandeses 33 (a) H. M. Schmidt and J. F. Arens, Recl. Trav. Chim. Pays-Bas, 1967,
´
and J. Perez Sestelo, Chem.
(d) D. B. Biradar and H.-M. Gau, Chem. Commun., 2011, 47,
–
Eur. J., 2010, 16, 9905–9909;
86, 1138–1142; (b) L. K. Geisler, S. Nguyen and C. J. Forsyth,
Org. Lett., 2004, 6, 4159–4162.
´
˜
10467–10469; (e) A. Kuno, N. Saino, T. Kamachi and S. Okamoto, 34 (a) F. Lopez and J. L. Mascarenas, Chem. Soc. Rev., 2014, 43,
Tetrahedron Lett., 2006, 47, 2591–2594.
6 (a) H. Zhang, N. Sun, B. Hu, Z. Shen, X. Hu and L. Jin, Org. Chem.
2904–2915; (b) B. Alcaide, P. Almendros and C. Aragoncillo,
Chem. Soc. Rev., 2014, 43, 3106–3135.
Front., 2019, 6, 1983–1988; (b) X.-Y. Dong, Y.-F. Zhang, C.-L. Ma, 35 C. Berthelette, M. Boyd, J. Colucci, K. Villeneuve and J. L. Methot,
Q.-S. Gu, F.-L. Wang, Z.-L. Li, S.-P. Jiang and X.-Y. Liu, Nat. Chem.,
2019, 11, 1158–1166.
US. Patent., No. US9023864B2, 2015.
36 T. Li and L. Zhang, J. Am. Chem. Soc., 2018, 140, 17439–17443.
7 T. Takahashi, M. Kitamura, B. Shen and K. Nakajima, J. Am. Chem. 37 T. Umezawa, Phytochem. Rev., 2003, 2, 371–390.
Soc., 2000, 122, 12876–12877. 38 D. Imperio, T. Pirali, U. Galli, F. Pagliai, L. Cafici, P. L. Canonico,
´
´
˜
´
8 C. Ruiz, A. Raya-Baron, M. A. Ortuno and I. Fernandez, Dalton
Trans., 2020, 49, 7932–7937.
G. Sorba, A. A. Genazzani and G. C. Tron, Bioorg. Med. Chem., 2007,
15, 6748–6757.
7532 | Chem. Commun., 2021, 57, 7529–7532
This journal is © The Royal Society of Chemistry 2021