Communications
[12] Boron analogs of 2,3-O-isopropylidene-2-3-dihydroxy-1,4-bis-
(diphenylphosphanyl)butane (diop) have been simultaneously
and independently investigated by the groups of Kagan and
Jacobsen: a) A. Börner, J. Ward, K. Kortus, H. B. Kagan,
Tetrahedron: Asymmetry 1993, 4, 2219 – 2228; b) L. B. Fields,
E. N. Jacobsen, Tetrahedron: Asymmetry 1993, 4, 2229 – 2240.
[13] Transition metal complexes of bis(phosphanylmethyl)boranes
have recently been reported, but here metal!boron interactions
are geometrically prohibited by the short methylene linkers:
a) L. Turculet, J. D. Feldman, T. D. Tilley, Organometallics 2004,
23, 2488 – 2502; b) J. C. Thomas, J. C. Peters, Polyhedron 2004,
23, 2901 – 2913.
[1] R. A. Fischer, J. Weiß, Angew. Chem. 1999, 111, 3002 – 3022;
Angew. Chem. Int. Ed. 1999, 38, 2830 – 2850.
[2] a) H. Wadepohl, Angew. Chem. 1997, 109, 2547 – 2550; Angew.
Chem. Int. Ed. Engl. 1997, 36, 2441 – 2444; b) H. Braunschweig,
Angew. Chem. 1998, 110, 1882 – 1898; Angew. Chem. Int. Ed.
1998, 37, 1786 – 1801; c) G. J. Irvine, M. J. Lesley, T. B. Marder,
N. C. Norman, C. R. Rice, E. G. Robins, W. R. Roper, G. R.
Whittell, L. J. Wright, Chem. Rev. 1998, 98, 2685 – 2722; d) M. R.
Smith III, Prog. Inorg. Chem. 1999, 48, 505 – 567; e) H.
Braunschweig, M. Colling, Coord. Chem. Rev. 2001, 223, 1 – 51;
f) N. N. Greenwood, Coord. Chem. Rev. 2002, 226, 61 – 69; g) H.
Braunschweig, M. Colling, Eur. J. Inorg. Chem. 2003, 393 – 403;
h) S. Aldridge, D. L. Coombs, Coord. Chem. Rev. 2004, 248, 535 –
559.
[14] M. Tamm, B. Dreßel, K. Baum, T. Lügger, T. Pape, J. Organomet.
Chem. 2003, 677, 1 – 9.
[15] G. Aullón, S. Alvarez, Inorg. Chem. 1996, 35, 3137 – 3144.
[16] Crystal data for 3: C35.25H46.5BClP2Rh, M = 681.33, tetragonal,
space group P42212, a = b = 20.711(11), c = 15.503(9) , V=
6650(7) 3, Z = 8, m(MoKa) = 0.713 mmꢀ1, crystal size 0.2 0.3
[3] G. Frenking, N. Fröhlich, Chem. Rev. 2000, 100, 717 – 774.
[4] J. M. Burlitch, M. E. Leonowicz, R. B. Petersen, R. E. Hughes,
Inorg. Chem. 1979, 18, 1097 – 1105.
0.3 mm3, 39070 reflections collected (6801 independent, Rint
=
[5] a) A. F. Hill, G. R. Owen, A. J. P. White, D. J. Williams, Angew.
Chem. 1999, 111, 2920 – 2923; Angew. Chem. Int. Ed. 1999, 38,
2759 – 2761; b) M. R. St.-J. Foreman, A. F. Hill, G. R. Owen,
A. J. P. White, D. J. Williams, Organometallics 2003, 22, 4446 –
4450; c) M. R. St.-J. Foreman, A. F. Hill, A. J. P. White, D. J.
Williams, Organometallics 2004, 23, 913 – 916; d) I. R. Crossley,
A. F. Hill, Organometallics 2004, 23, 5656 – 5658; e) D. J. Mihal-
cik, J. L. White, J. M. Tanski, L. N. Zakharov, G. P. A. Yap, C. D.
Incarvito, A. L. Rheingold, D. Rabinovitch, Dalton Trans. 2004,
1626 – 1634; f) I. R. Crossley, M. R. St.-J. Foreman, A. F. Hill,
A. J. P. White, D. J. Williams, Chem. Commun. 2005, 221 – 223;
g) I. R. Crossley, A. F. Hill, A. C. Willis, Organometallics 2005,
24, 1062 – 1064; h) I. R. Crossley, A. F. Hill, E. R. Humphrey,
A. C. Willis, Organometallics 2005, 24, 4083 – 4086.
[6] Metal!boron interactions have also been proposed to account
for the bent structure of metallocenylboranes, and the delocal-
ized through-space nature of such M!B interactions has been
recently established theoretically for ferrocenylboranes: a) M.
Scheibitz, M. Bolte, J. W. Bats, H.-W. Lerner, I. Nowik, R. H.
Herber, A. Krapp, M. Lein, M. C. Holthausen, M. Wagner,
Chem. Eur. J. 2005, 11, 584 – 603; b) K. Venkatasubbaiah, L. N.
Zakharov, W. S. Kassel, A. L. Rheingold, F. Jäkle, Angew. Chem.
2005, 117, 5564 – 5569; Angew. Chem. Int. Ed. 2005, 44, 5428 –
5433, and references therein.
0.1009), 453 parameters, R1(I>2s(I)) = 0.0312, wR2(all data) =
0.0711, largest diff. peak and hole: 0.750 and ꢀ0.337 eꢀ3. 4:
¯
C41H59BClN2OP2Rh, M = 807.01, triclinic, space group P1, a =
10.0198(8), b = 10.2336(8), c = 21.9239(18) , a = 100.279(2),
b = 91.578(2), g = 115.263(1)8, V= 1986.8(3) 3, Z = 2, m-
(MoKa) = 0.612 mmꢀ1
,
crystal size 0.1 0.3 0.4 mm3, 8716
reflections collected (5588 independent,
Rint = 0.0822), 452
parameters, R1(I>2s(I)) = 0.0434, wR2(all data) = 0.0966, lar-
gest diff. peak and hole: 1.018 and ꢀ0.578 eꢀ3. Data for all
structures were collected at 133(2) K for an oil-coated, shock-
cooled crystal on a Bruker-AXS CCD 1000 diffractometer (l =
0.71073 ). The structures were solved by direct methods
(SHELXS-97),[20] and refined using the least-squares method
on F2.[21] CCDC-286287 (3) and -286288 (4) contain the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
[17] G. Aullón, G. Ujaque, A. Lledós, S. Alvarez, P. Alemany, Inorg.
Chem. 1998, 37, 804 – 813.
[18] a) P. Dierkes, P. W. N. M. van Leeuwen, J. Chem. Soc. Dalton
Trans. 1999, 1519 – 1529; b) Z. Freixa, P. W. N. M. van Leeuwen,
Dalton Trans. 2003, 1890 – 1901.
[19] See Supporting Information for details.
[20] G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467 – 473.
[21] SHELXL-97, Program for Crystal Structure Refinement, G. M.
Sheldrick, University of Göttingen, 1997.
[7] a) K. S. Cook, W. E. Piers, R. McDonald, Organometallics 1999,
18, 1575 – 1577; b) K. S. Cook, W. E. Piers, R. McDonald,
Organometallics 2001, 20, 3927 – 3937; c) K. S. Cook, W. E.
Piers, R. McDonald, J. Am. Chem. Soc. 2002, 124, 5411 – 5418.
[8] Somewhat related zirconium and palladium complexes of boron-
bridged diylides have recently been reported: F. Jiang, P. J.
Shapiro, F. Fahs, B. Twamley, Angew. Chem. 2003, 115, 2755 –
2757; Angew. Chem. Int. Ed. 2003, 42, 2651 – 2653.
[9] a) D. Curtis, M. J. G. Lesley, N. C. Norman, A. G. Orpen, J.
Starbuck, J. Chem. Soc. Dalton Trans. 1999, 1687 – 1694; b) S. A.
Westcott, T. B. Marder, R. T. Baker, R. L. Harlow, J. C. Calab-
rese, K. C. Lam, Z. Lin, Polyhedron 2004, 23, 2665 – 2677; c) H.
Braunschweig, K. Radacki, D. Rais, G. R. Whittell, Angew.
Chem. 2005, 117, 1217 – 1219; Angew. Chem. Int. Ed. 2005, 44,
1192 – 1193.
[10] For metallocene complexes featuring pendant boryl groups, see:
a) W. E. Piers, Chem. Eur. J. 1998, 4, 13 – 18; b) M. Hill, G. Kehr,
R. Fröhlich, G. Erker, Eur. J. Inorg. Chem. 2003, 3583 – 3589;
c) M. Hill, G. Erker, G. Kehr, R. Fröhlich, O. Kataeva, J. Am.
Chem. Soc. 2004, 126, 11046 – 11057; d) S. J. Lancaster, S. Al-
Benna, M. Thornton-Pett, M. Bochmann, Organometallics 2000,
19, 1599 – 1608.
[11] The activation of a nickel–methyl bond by a phosphanylalane
has been reported in the context of silane polymerization: F.-G.
Fontaine, D. Zargarian, J. Am. Chem. Soc. 2004, 126, 8786 – 8794.
1614
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 1611 –1614