558
H. Araki et al.
LETTER
Matsunaga, S.; Hashimoto, K. Tetrahedron Lett. 1989, 30,
2809. (d) Egawa, Y.; Umino, K.; Tamura, Y.; Shimizu, M.;
Kaneko, K.; Sakurazawa, M.; Awataguchi, S.; Okuda, T. J.
Antibiot. 1969, 22, 12. (e) Shinya, K.; Wierzba, K.; Matsuo,
K.; Ohtani, T.; Yamada, Y.; Furihata, K.; Hayakawa, Y.;
Seto, H. J. Am. Chem. Soc. 2001, 123, 1262. (f) Sohda, K.;
Nagai, K.; Yamori, T.; Suzuki, K.; Tanaka, A. J. Antibiot.
2005, 58, 27. (g) Sohda, K.; Hiramoto, M.; Suzumura, K.;
Takebayashi, Y.; Suzuki, K.; Tanaka, A. J. Antibiot. 2005,
58, 32.
(13) (a) Prager, R. H.; Smith, J. A.; Weber, B.; Williams, C. M.
J. Chem. Soc., Perkin Trans. 1 1997, 2665. (b) The method
reported in ref. 13a is inconvenient to synthesize 3. We
developed the alternative method to prepare bromide 3 from
benzoyl chloride and propargylamine as follows
(Scheme 3).
Et3N
O
O
CH2Cl2
+
H2N
Ph
Cl
Ph
N
H
at 0 °C
30 min
(63%)
(3) Undheim, K. In Handbook of Organopalladium Chemistry
for Organic Synthesis, Vol 1; Negishi, E., Ed.; John Wiley
and Sons: New York, 2002, 409–492; and references therein.
(4) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.;
Pedrini, P. Synthesis 1987, 693.
NBS
DMF
NaH
dioxane
Br
Me
N
O
N
Ph
Ph
r.t., 6 h
(32%)
reflux, 4 h
(77%)
O
Me
(5) (a) Barrett, A. G. M.; Kohrt, J. T. Synlett 1995, 415.
(b) Collins, I.; Castro, J. L.; Street, L. J. Tetrahedron Lett.
2000, 41, 781. (c) Clapham, B.; Sutherland, A. J. J. Org.
Chem. 2001, 66, 9033.
3
Scheme 3
(6) (a) Anderson, B. A.; Harn, N. K. Synthesis 1996, 583.
(b) Anderson, B. A.; Becke, L. M.; Booher, R. N.; Flaugh,
M. E.; Harn, N. K.; Kress, T. J.; Varie, D. L.; Wepsiec, J. P.
J. Org. Chem. 1997, 62, 8634. (c) Vedejs, E.; Luchetta, L.
M. J. Org. Chem. 1999, 64, 1011.
(7) (a) Kelly, T. R.; Lang, F. J. Org. Chem. 1996, 61, 4623.
(b) Boto, A.; Ling, M.; Meek, G.; Pattenden, G. Tetrahedron
Lett. 1998, 39, 8167. (c) Liu, C.-M.; Chen, B.-H.; Liu, W.-
Y.; Wu, X.-L.; Ma, Y.-X. J. Organomet. Chem. 2000, 598,
348. (d) Hodgetts, K. J.; Kershaw, M. T. Org. Lett. 2002, 4,
2905. (e) Hodgetts, K. J.; Kershaw, M. T. Org. Lett. 2003, 5,
2911. (f) Maekawa, T.; Sakai, N.; Tawada, H.; Murase, K.;
Hazama, M.; Sugiyama, Y.; Momose, Y. Chem. Pharm.
Bull. 2003, 51, 565. (g) Young, G. L.; Smith, S. A.; Taylor,
R. J. K. Tetrahedron Lett. 2004, 45, 3797.
(8) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
(9) Tyrrell, E.; Brookes, P. Synthesis 2004, 469; and references
therein.
(10) (a) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem.
1995, 60, 7508. (b) Ishiyama, T.; Itoh, Y.; Kitano, T.;
Miyaura, N. Tetrahedron Lett. 1997, 38, 3447.
(14) Preparation of 5-Methyl-2-phenyl-4-(4,4,5,5-tetra-
methyl-1,3,2-dioxaborolan-2-yl)oxazole (4).
n-BuLi in n-hexane (1.58 M, 0.42 mL, 0.67 mmol) was
added to a stirred solution of 4-bromo-5-methyl-2-phenyl-
oxazole (3, 144 mg, 0.65 mmol) in THF (3 mL) at –78 °C
under Ar. After 30 min, triisopropylborate (0.17 mL, 0.73
mmol) was added to the resulting solution and stirred for 1 h
at the same temperature. The reaction mixture was allowed
to warm to r.t. and stirred for 1 h. Pinacol (86 mg, 0.73
mmol) and glacial AcOH (42 mL, 0.73 mmol) were added to
the resulting solution and the resulting mixture was stirred
for 1 h. The reaction mixture was diluted with Et2O (30 mL)
and washed with H2O (10 mL) and then dried over Na2SO4.
Concentration of the solvent in vacuo gave a residue, which
was purified by silica gel column chromatography (hexane–
EtOAc, 1:1) to give 5-methyl-2-phenyl-4-(4,4,5,5-tetra-
methyl-1,3,2-dioxaborolan-2-yl)-oxazole (4). After recryst-
allization from hot hexane, pure 4 (95 mg, 55%) was
obtained as colorless needles; mp 108–109 °C. 1H NMR
(500 MHz, CDCl3): d = 1.36 (12 H, s), 2.56 (3 H, s), 7.41 (3
H, m), 8.10 (2 H, m). 13C NMR (125 MHz, CDCl3): d = 11.8,
24.9, 83.9, 126.5, 127.6, 128.5, 129.9, 160.1, 161.0. IR
(neat): 2979, 1593, 1407, 1382, 1317, 1141, 1085, 1050, 696
cm–1. HRMS (EI): m/z calcd for C16H20BNO3 [M+]:
285.1536; found: 285.1532.
(11) Schaus, J. V.; Panek, J. S. Org. Lett. 2000, 2, 469.
(12) Preparation of 2-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)oxazole (2).
A suspension of Pd2(dba)3·CHCl3 (120 mg, 0.13 mmol) and
tricyclohexylphosphine (220 mg, 0.78 mmol) in 1,4-dioxane
(60 mL) was stirred for 30 min at r.t. under Ar.
(15) Although both K2CO3 and K3PO4 worked well in the
coupling reaction of 2 with bromobenzene, we chose K2CO3
as a base for further applications due to its milder basicity.
(16) General Procedure of the Suzuki Coupling [Synthesis of
2,4-Diphenyloxazole (5)].
Bis(pinacolato)diboron (1.46 g, 5.7 mmol), 2-phenyl-4-tri-
fluoromethanesulfonyloxyoxazole (1, 1.53g, 5.2 mmol) and
KOAc (769 mg, 7.8 mmol) were successively added to the
resulting solution. After being at reflux for 2 h, the reaction
mixture was diluted with Et2O (300 mL). The resulting
mixture was washed with H2O (100 mL) and then dried over
Na2SO4. Concentration of the solvent in vacuo gave a
residue, which was purified by silica gel column chromato-
graphy (hexane–EtOAc, 20:1 to 1:1) to give 2-phenyl-4-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxazole (2).
After recrystallization from hot hexane, pure 2 (1.06 g, 75%)
was obtained as colorless needles; mp 124–125 °C. 1H NMR
(500 MHz, CDCl3): d = 1.38 (12 H, s), 7.44 (3 H, m), 8.07 (1
H, s), 8.14 (2 H, m). 13C NMR (125 MHz, CDCl3): d = 24.8,
84.3, 126.9, 127.3, 128.6, 130.4, 148.0, 162.8; IR (neat)
2996, 2973, 1567, 1363, 1319, 1081, 692 cm–1. HRMS (EI):
m/z calcd for C15H18BNO3 [M+]: 271.1380; found: 271.1374.
A solution of 2 (60 mg, 0.22 mmol), bromobenzene (23 mL,
0.22 mmol), tetrakis(triphenylphosphine)palladium(0) (13
mg, 11 mmol) and K2CO3 (92 mg, 0.66 mmol) in DMF (1
mL) was heated at 100 °C for 30 min under Ar. The reaction
mixture was diluted with Et2O (30 mL) and washed with
H2O (10 mL) and then dried over Na2SO4. Concentration of
the solvent in vacuo gave a residue, which was purified by
silica gel column chromatography (hexane–EtOAc, 20:1) to
give 2,4-diphenyloxazole (5, 43 mg, 88%) as a white solid.
All characterization data of 5 were compatible with the
literature.13
(17) Self-coupling reaction of the borane reagent 2 occurred to
give 2,2¢-diphenyl-4,4¢-bioxazole in ca. 20% yield. This
undesired event sometimes happened in slow Suzuki
reaction, see: Moreno-Mañas, M.; Pérez, M.; Pleixats, R. J.
Org. Chem. 1996, 61, 2346.
Synlett 2006, No. 4, 555–558 © Thieme Stuttgart · New York