38
S.A. Popov et al. / Journal of Molecular Structure 872 (2008) 30–39
(1 · 10ꢁ2 M each). The nitrone:alkyne ratio was from 1:0.5
to 1:0.9. The depth of the reaction was monitored by thin
layer chromatography. After completion of the reaction
the solvent was removed, and 1H NMR spectra of the reac-
tion mixture was registered. The ratio k1/k2 for the compet-
itive reactions A + X fi N (k1), B + X fi M (k2) was
calculated in accordance with the equation k1/k2 = ln(A/
A0)/ln(B/B0), where A0, B0 and A, B are the initial and final
concentrations of the corresponding nitrones.
2191, Rint = 0.1435, 363 parameters, Goof = 1.286, R indi-
ces (I > 2rI): R1 = 0.0816, wR2 = 0.1926, R indices (all
data): R1 = 0.0947, wR2 = 0.2008.
References
[1] R. Huisgen, Proc. Chem. Soc. (1961) 357.
[2] R.A. Firestone, J. Org. Chem. 33 (1968) 2285.
[3] R. Huisgen, J. Org. Chem. 33 (1968) 2291.
[4] R.A. Firestone, J. Chem. Soc., (A) 9 (1970) 1570.
[5] R.A. Firestone, J. Org. Chem. 37 (1972) 2181.
4.4. Competitive reactions of alkynes 2
[6] R.A. Firestone, J. Org. Chem. 41 (1976) 403.
[7] L.R. Domingo, M.T. Picher, Tetrahedron 60 (2004) 5053.
[8] D.V. Cristiana, F. Mauro, G. Remo, R. Augusto, J. Org. Chem. 65
(2000) 6112.
[9] M.A. Silva, J.M. Goodman, Tetrahedron 58 (2002) 3667.
[10] K. Marakchi, O.K. Kabbaj, N. Komiha, J. Fluorine Chem. 114
(2002) 81, CA 137:108952.
[11] P. Merino, J. Revuelta, T. Tejero, U. Chiacchio, A. Rescifina, G.
Romeo, Tetrahedron 59 (2002) 3581.
[12] K. Kaliaperumal, V. Ponnambalam, J. Chem. Soc., Perkin Trans. 2
(12) (2002) 2130.
A cooled solution of nitrone 1 (1 · 10ꢁ2 M) in CDCl3
was added to a cooled solution of equimolar amount of
two alkynes 2(1 · 10ꢁ2 M each) in CDCl3. The alkyne:nit-
rone ratio was varied from 1:0.5 to 1:0.9. The depth of the
reaction was monitored by thin layer chromatography.
1
After completion of the reaction H NMR spectra of the
reaction mixture was registered. The ratio k1/k2 for the
competitive reactions A + X fi N (k1), B + X fi M (k2)
was calculated in accordance with the equation k1/
k2 = ln(A/A0)/ln(B/B0), where A0, B0 and A, B are the ini-
tial and final concentrations of the corresponding alkynes.
[13] K. Fukui, Acc. Chem. Res. 4 (1971) 57.
[14] I. Fleming, in: Frontier Molecular Orbitals and Organic Chemical
Reactions, William Clowes and Sons, London, 1976, p. 258.
[15] (a) R.C.F. Jones, J.N. Martin, P. Smith, T. Gelbrich, M.E. Light,
M.B. Hursthouse, Chem. Commun. 19 (2000) 1949;
(b) R.C.F. Jones, J.N. Martin, P. Smith, J. Heterocyclic Chem. 3
(2000) 481;
(c) R.C.F. Jones, J.N. Martin, P. Smith, Synlett 7 (2000) 967.
[16] R. Huisgen, H. Saidl, I. Bruning, Chem. Ber. 102 (1969) 1102.
[17] (a) N.A. Akmanova, Yu.M. Shaul0skii, Ya.V. Svetkin, Org. Khim.;
I.I. Lapkin (Ed.), Perm: Perm Gos. Univ. press. (1976) 88. Chem.
Abstr., 88, 169274v;
4.5. (2-tert-Butyl-3,5-diphenyl-2,3-dihydroisoxazol-4-
yl)phenylmethanone (7b)
A solution of N-tert-butyl-C-phenylnitrone 5b (0.139 g,
0.78 mmol) and 1,3-diphenyl-propynone 2d (0.27 ml,
0.94 mmol) in CCl4 (3 ml) was refluxed for 9 h. The solvent
was removed and the residue was treated with a small
amount of hexane, the precipitate was filtered off and
recrystallized from hexane–ethyl acetate mixture to give
0.181 g (60%) of 7b.
(b) Ya.D. Samuilov, S.E. Solov’eva, T.F. Girutskaya, A.I. Konova-
lov, Zh. Org. Khim. 14 (1978) 1693, Chem. Abstr., 89, 214586g;
(c) Ya.D. Samuilov, S.E. Solov’eva, A.I. Konovalov, T.G. Mannafov,
Zh. Org. Khim. 15 (1979) 279, Chem. Abstr., 90, 203132a;
(d) Ya.D. Samuilov, S.E. Solov’eva, A.I. Konovalov, Zh. Obshch.
Khim. 49 (1979) 637, Chem. Abstr., 91, 38467z;
1H NMR (CDCl3, 200.13 MHz, d, ppm): 1.83 (s, 9H,
-C(CH3)3), 5.76 (s, 1H, 3-H), 6.90–7.50 (m, 15H, Ph). 13C
NMR (CDCl3, 50.32 MHz, d, ppm): 25.0 (dm,
J = 127.0 Hz, C(CH3)3), 61.4 (m, C(CH3)3), 70.3 (dt,
J = 140.3 Hz, J = 4.5 Hz, C-3), 114.7 (d, J = 5.9 Hz, C-
4), 127.2 (dt, J = 160.3 Hz, J = 7.5 Hz, 3-Ph, C-40), 127.6
(m, 3-Ph, C-10), 127.5, 127.6, 127.7, 128.2, 128.6, 129.1
(dt, J = 160.5 Hz, J = 7.5 Hz, 3,5-Ph, CO-Ph, C-20, C-30),
130.1 (dt, J = 160.5 Hz, J = 7.5 Hz, 5-Ph, C-40), 131.0
(dt, J = 160.5 Hz, J = 7.5 Hz, CO-Ph, C-40), 138.7 (t,
J = 7.4 Hz, CO-Ph, C-10), 143.1 (t, J = 7.4 Hz, 5-Ph, C-
10), 161.9 (t, J = 4.2 Hz, C-5), 191.3 (t, J = 3.9 Hz, CO-
Ph). kmax, (ethanol), nm (lg e): 251 (4.11), 330 (3.84). IR
(KBr): m = 3055, 2970, 1630, 1605, 1576, 1493, 1447,
1347, 1238, 1209, 1138, 1075, 887, 808, 772, 731,
701 cmꢁ1. M.p. 131–132 ꢁC (from hexane–ethyl acetate).
(e) Ya.D. Samuilov, S.E. Solov’eva, A.I. Konovalov, Dokl. Akad.
Nauk SSSR 255 (1980) 606.
[18] Y.-M. Chang, J. Sims, K.N. Houk, Tetrahedron Lett. 50 (1975) 4445.
[19] S.A. Popov, N.V. Chukanov, G.V. Romanenko, T.V. Rybalova, Y.V.
Gatilov, V.A. Reznikov, J. Heterocyclic Chem. 43 (2006) 277.
[20] M.L. Yeung, W.-K. Li, H.-J. Liu, Y. Wang, K.S. Chan, J. Org.
Chem. 63 (1998) 7670.
[21] J.E. Baldwin, R.G. Pudussery, A.L. Qureshi, B. Sklarz, J. Am. Chem.
Soc. 90 (1968) 5325.
[22] (a) G. Steiner, R. Huisgen, J. Am. Chem. Soc. 95 (1973) 5056;
(b) R. Huisgen, Acc. Chem. Res. 10 (1977) 117.
[23] M.J. Copley, S.E. Holley, J. Am. Chem. Soc. 61 (1939) 1599.
[24] S.S. Stanford, W. Gorby, J. Am. Chem. Soc. 63 (1941) 1094.
[25] S.A. Popov, V.A. Reznikov, J. Heterocyclic Chem. 43 (2006) 293.
[26] S.A. Popov, R.V. Andreev, G.V. Romanenko, V.I. Ovcharenko, V.A.
Reznikov, J. Mol. Struct. 697 (2004) 49.
[27] R. Huisgen, L. Fisera, H. Giera, R. Sustmann, J. Am. Chem. Soc. 117
(1995) 9671.
[28] C.K. Ingold, in: Structures and Mechanisms in Organic Chemistry,
Cornell University press, Ithaca and London, 1969, p. 1055.
[29] J.J. Tufariello, in: A. Padwa (Ed.), 1,3-Dipolar Cycloaddition
Chemistry, vols. 1 and 4, Wiley-Interscience, New York, 1984.
[30] The rate constants for the reaction of nitrone 1e with alkyne 2d in
different solvents were estimated taking into consideration the data
Found:
C 81.40, H 6.61, N 3.67. Calculated for
C24H28N2O3: C 81.43, H 6.57, N 3.65.
Crystallographic data (CCDC 293549): C26H25NO2,
FW = 383.47, monoclinic, P21/n, a = 5.9027(14), b =
˚
10.500(3),
c = 33.907(8)
A,
b = 90.816(5)ꢁ,
V =
given in Tables 4 and 6. According to data from Table 6: k1e
:
3
3
ꢁ1
˚
2101.2(9) A , Z = 4, Dc = 1.212 g/cm , l = 0.076 mm
,
k1f ꢄ 2.7, on average. Consequently, k1e + 2d ꢄ k1f + 2d · 2.7 in
2.03 < h < 20.81ꢁ, reflections collected/unique = 12,260/
various solvents, while the values of k1f + 2d are presented in Table 4.