Page 5 of 6
Journal of the American Chemical Society
14, 1428. (h) Shigehisa, H.; Nishi, E.; Fujisawa, M.; Hiroya, K. Co-
heterocycles by hydrofunctionalization of unactivated olefins: unpro-
tected and protected strategies J. Am. Chem. Soc. 2016, 138, 10597.
(9) A radical-polar crossover pathway is also proposed in a relevant
hydroarylation of alkenes: Shigehisa, H.; Ano, T.; Honma, H.; Ebisa-
wa, K.; Hiroya, K. Co-Catalyzed hydroarylation of unactivated ole-
fins Org. Lett. 2016, 18, 3622.
(10) For examples and an excellent discussion see: Surry, D. S.;
Buchwald, S. L. Biaryl phosphane ligands in palladium-catalyzed
amination. Angew. Chem. Int. Ed. 2008, 47, 6338.
balt-catalyzed hydrofluorination of unactivated olefins: a radical ap-
proach of fluorine transfer. Org. Lett. 2013, 15, 5158. (i) Iwasaki, K.;
Wan, K. K.; Oppedisano, A.; Crossley, S. W. M.; Shenvi, R. A. Sim-
ple, chemoselective hydrogenation with thermodynamic stereocontrol.
J. Am. Chem. Soc. 2014, 136, 1300. (j) King, S. M.; Ma, X.; Herzon,
S. B. A method for the selective hydrogenation of alkenyl halides to
alkyl halides. J. Am. Chem. Soc. 2014, 136, 6884. (k) Ma, X. S.; Her-
zon, S. B. Non-classical selectivities in the reduction of alkenes by
cobalt-mediated hydrogen atom transfer. Chem. Sci. 2015, 6, 6250. (l)
Zheng, J.; Wang, D.; Cui, S. Fe-Catalyzed reductive coupling of un-
activated alkenes with β-nitroalkenes. Org. Lett. 2015, 17, 4572. (m)
Crossley, S. W. M.; Martinez, R. M.; Guevara-Zuluaga, S.; Shenvi, R.
A. Synthesis of the privileged 8-arylmenthol class by radical arylation
of isopulegol. Org. Lett. 2016, 18, 2620. (n) Ma, X.; Herzon, S. B.
Intermolecular hydropyridylation of unactivated alkenes J. Am. Chem.
Soc. 2016, 138, 8718.
(4) For selected examples see: (a) Wang, L.-C.; Jang, H.-Y.; Roh,
Y.; Lynch, V.; Schultz, A. J.; Wang, X.; Krische, M. J. Diastereose-
lective cycloreductions and cycloadditions catalyzed by Co(dpm)2-
silane (dpm = 2,2,6,6-tetramethylheptane-3,5-dionate):ꢀ mechanism
and partitioning of hydrometallative versus anion radical pathways. J.
Am. Chem. Soc. 2002, 124, 9448. (b) Waser, J.; Carreira, E. M. Con-
venient synthesis of alkylhydrazides by the cobalt-catalyzed hydrohy-
drazination reaction of olefins and azodicarboxylates. J. Am. Chem.
Soc. 2004, 126, 5676. (c) Smith, D. M.; Pulling, M. E.; Norton, J. R.
Tin-free and catalytic radical cyclizations. J. Am. Chem. Soc. 2007,
129, 770. (d) Lo, J. C.; Yabe, Y.; Baran, P. S. A practical and catalyt-
ic reductive olefin coupling. J. Am. Chem. Soc. 2014, 136, 1304. (e)
Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. Functionalized
olefin cross-coupling to construct carbon–carbon bonds. Nature 2014,
516, 343. (f) Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. Simple,
chemoselective, catalytic olefin isomerization. J. Am. Chem. Soc.
2014, 136, 16788 (g) Kuo, J. L.; Hartung, J.; Han, A.; Norton, J. R.
Direct generation of oxygen-stabilized radicals by H• transfer from
transition metal hydrides. J. Am. Chem. Soc. 2015, 137, 1036. (h) Gui,
J.; Pan, C.-M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.;
Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Dar-
vatkar, N.; Natarajan, S.; Baran, P. S. Practical olefin hydroamination
with nitroarenes. Science 2015, 348, 886. (i) Dao, H. T.; Li, C.;
Michaudel, Q.; Maxwell, B. D.; Baran, P. S. Hydromethylation of
unactivated olefins. J. Am. Chem. Soc. 2015, 137, 8046. (j) Zheng, J.;
Qi, J.; Cui, S. Fe-Catalyzed olefin hydroamination with diazo com-
pounds for hydrazone synthesis. (k) Lo, J. C.; Kim, D.; Pan, C.-M.;
Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutiérrez, S.; Giacoboni, J.;
Smith, M. W.; Holland, P. L.; Baran, P. S. Fe-catalyzed C–C bond
construction from olefins and radicals. J. Am. Chem. Soc. 2017, 139,
2484. (l) Saladrigas, M.; Bosch, C.; Saborit, G. V.; Bonjoch, J.; Brad-
shaw, B. Radical cyclization of alkene-tethered ketones initiated by
hydrogen-atom transfer. Angew. Chem. Int. Ed. 2018, 57, 182. (m)
Saladrigas, M.; Loren, G.; Bonjoch, J.; Bradshaw, B. Hydrogen atom
transfer (HAT)-triggered iron-catalyzed intra- and intermolecular
coupling of alkenes with hydrazones: access to complex amines. ACS
Catal. 2018, 8, 11699.
1
2
3
4
5
6
7
8
(11) For a unique case of catalyst control in relevant alkene isomer-
izations see reference (4)(f).
9
(12) For examples of relevant metal hydride-mediated reactions of
allylic alcohols see references (3)(i), (3)(l), (4)(b),(h),(i),(j). For appli-
cations in synthesis see: (a) Cherney, E. C.; Lopchuk, J. M.; Green, J.
C.; Baran, P. S. A unified approach to ent-atisane diterpenes and re-
lated alkaloids: synthesis of (–)-methyl atisenoate, (–)-isoatisine, and
the hetidine skeleton. J. Am. Chem. Soc. 2014, 136, 12592. (b) Zhu,
D.; Yu, B. Total synthesis of linckosides A and B, the representative
starfish polyhydroxysteroid glycosides with neuritogenic activities. J.
Am. Chem. Soc. 2015, 137, 15098.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(13) Abley, P.; Dockal, E. R.; Halpern, J. Oxidative cleavage of
cobalt-carbon bonds in organobis(dimethylg1yoximato)cobalt com-
pounds J. Am. Chem. Soc. 1972, 94, 659.
(14) (a) Halpern, J.; Chan, M. S.; Hanson, J.; Roche, T. S.; Topich,
J. A. Detection and characterization of radical cations produced by
one-electron chemical and electrochemical oxidations of organocobalt
compounds J. Am. Chem. Soc. 1975, 97, 1606. (b) Halpern, J.;
Topich, J.; Zamaraev, K. I. Electron paramagnetic resonance spectra
and electronic properties of organobis(dimethylglyoximato)cobalt(IV)
complexes. Inorganica Chim. Acta 1976, 20, L21. (c) Topich, J.;
Halpern, J. Organobis(dioximato)cobalt(IV) complexes: electron
paramagnetic resonance spectra and electronic structures Inorg.
Chem. 1979, 18, 1339. (d) Halpern, J.; Chan, M. S.; Roche, T. S.;
Tom,
G.
M.
Redox
chemistry
of
organo-
bis(dimethylglyoximato)cobalt complexes. Acta Chem. Scan. A 1979,
33, 141.
(15) Formation of relevant inner-sphere complexes between cation-
ic cobalt(III) species and alkyl radicals has also been proposed:
Lande, S. S.; Kochi, J. K. Formation and oxidation of alkyl radicals
by cobalt(III) complexes. J. Am. Chem. Soc. 1968, 90, 5196.
(16) Anderson, S. N.; Ballard, D. H.; Chrzastowski, J. Z.; Dodd,
D.; Johnson, M. D. Inversion of configuration in the nucleophilic
displacement of cobalt from alkylcobalt( IV) complexes and its rele-
vance to the halogenation of the corresponding alkylcobalt(III) com-
plexes J. Chem. Soc., Chem. Commun. 1972, 0, 685.
(17) Magnuson, R. H.; Halpern, J.; Levitin, I. Ya.; Vol’pin, M. E.
Stereochemistry of the nucleophilic cleavage of cobalt-carbon bonds
in organocobalt(IV) compounds J. Chem. Soc., Chem. Commun.
1978, 0, 44.
(18) For a discussion of alternative mechanisms of displacement
see: Vol’pin, M. E.; Levitin, I. Ya.; Sigan, A. L.; Halpern, J.; Tom, G.
M. Reactivity of organocobalt(IV) chelate complexes toward nucleo-
philes: diversity of mechanisms. Inorg. Chim. Acta 1980, 41, 271.
(19) Radical pair formation via the HAT: Sweany, R. L.; Halpern,
J. Hydrogenation of α-methylstyrene by hydridopentacarbonylmanga-
nese(I). Evidence for a free-radical mechanism. J. Am. Chem. Soc.
1977, 99, 8335.
(20) For the proposed involvement of the HAT as the initial step in
relevant metal hydride-mediated hydrogenations see references (3)(i)
and (3)(j). For similar mechanistic considerations see: (a) Eisenberg,
D. C.; Norton, J. R. Hydrogen-atom transfer reactions of transition-
metal hydrides. Isr. J. Chem. 1991, 31, 55. (b) Ishikawa, H.; Colby,
D. A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.; Rayl, T. J.; Hwang, I.;
Boger, D. L. Total synthesis of vinblastine, vincristine, related natural
products, and key structural analogues J. Am. Chem. Soc. 2009, 131,
4904.
(5) (a) Green, S. A.; Matos, J. L. M.; Yagi, A.; Shenvi, R. A.
Branch-selective hydroarylation: iodoarene–olefin cross-coupling J.
Am. Chem. Soc. 2016, 138, 12779. (b) Green, S. A.; Vásquez-
Céspedes, S.; Shenvi, R. A. Iron–nickel dual-catalysis: a new engine
for olefin functionalization and the formation of quaternary centers J.
Am. Chem. Soc. 2018, 140, 11317.
(6) Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya,
K. Hydroalkoxylation of unactivated olefins with carbon radicals and
carbocation species as key intermediates. J. Am. Chem. Soc. 2013,
135, 10306.
(7) Shigehisa, H.; Koseki, N.; Shimizu, N.; Fujisawa, M.; Niitsu,
M.; Hiroya, K. Catalytic hydroamination of unactivated olefins using
a Co catalyst for complex molecule synthesis. J. Am. Chem. Soc.
2014, 136, 13534.
(21) Ungvávy, F.; Markó, L. Reaction of HCo(CO)4 and CO with
styrene.
Mechanism
of
(α-phenylpropiony1)-
and
(β-
(8) Shigehisa, H.; Hayashi, M.; Ohkawa, H.; Suzuki, T.; Okayasu,
H.; Mukai, M.; Yamazaki, A.; Kawai, R.; Kikuchi, H.; Satoh, Y.;
Fukuyama, A.; Hiroya, K. Catalytic synthesis of saturated oxygen
phenylpropionyl)cobalt tetracarbony1 formation. Organometallics
1982, 1, 1120.
(22) References (4)(f) and (5)(a).
5
ACS Paragon Plus Environment