4 D. Enders and A. Seki, Synlett, 2002, 26.
5 J. M. Betancort, K. Sakthivel, R. Thayumanavan and C. F. Barbas, III,
Tetrahedron Lett., 2001, 42, 4441.
6 A. Alexakis and O. Andrey, Org. Lett., 2002, 4, 3611.
7 H. J. Martin and B. List, Synlett, 2003, 1901.
8 (a) O. Andrey, A. Alexakis, A. Tomassini and G. Bernardinelli, Adv.
Synth. Catal., 2004, 346, 1147; (b) D. Terakado, M. Takano and
T. Oriyama, Chem. Lett., 2005, 34, 962; (c) W. Wang, J. Wang and
H. Li, Angew. Chem., 2005, 117, 1393, Angew. Chem., Int. Ed., 2005, 44,
1369.
9 (a) A. J. A. Cobb, D. A. Longbottom, D. M. Shaw and S. V. Ley,
Chem. Commun., 2004, 1808; (b) C. E. T. Mitchell, A. J. A. Cobb and
S. V. Ley, Synlett, 2005, 611; (c) A. J. A. Cobb, D. M. Shaw,
D. A. Longbottom, J. B. Gold and S. V. Ley, Org. Biomol. Chem., 2005,
3, 84.
Fig. 3 ESI-MS experiment of the enamine intermediate 4a9 and
proposed transition states for the Michael reaction of symmetrical (A)
and nonsymmetrical ketones (B) with trans-b-nitrostyrene.
10 T. Ishii, S. Fujioka, Y. Sekiguchi and H. Kotsuki, J. Am. Chem. Soc.,
2004, 126, 9558.
11 For reviews of metallic bifunctional catalysts, see: (a) J.-A. Ma and
D. Cahard, Angew. Chem., 2004, 116, 4666, Angew. Chem., Int. Ed.,
2004, 43, 4566; (b) M. Shibasaki and N. Yoshikawa, Chem. Rev., 2002,
102, 2187; (c) H. Gro¨ger, Chem.–Eur. J., 2001, 7, 5246; (d) M. Shibasaki,
H. Sasai and T. Arai, Angew. Chem., 1997, 109, 1290, Angew. Chem.,
Int. Ed., 1997, 36, 1236.
catalysts with a primary amine residue can successfully catalyze the
asymmetric addition of ketones to nitroolefins. However, low to
moderate enantioselectivities resulted when hydroxyacetone
(27% ee) or methylethylketone (67% ee) were used as a substrate.19
To confirm the importance of the thiourea moiety of 4a for the
catalysis, (1S,2S)-(2)-1,2-diphenylethylenediamine alone as well as
with additive was next tested as catalyst. Intriguingly, whereas the
combination of (1S,2S)-(2)-1,2-diphenylethylenediamine and
AcOH–H2O in toluene (72 h) gives the R Michael product in
26% yield and with 60% ee, the (1S,2S)-(2)-1,2-diphenylethylene-
diamine alone produces the S product, in 10% yield and with
11% ee. These experiments show that the primary amine even in
the presence of acid additive is not able to facilitate the nitro-
Michael addition with good yield, and thus the prerequisite for
very good yield and enantioselectivity is that the catalyst possesses
both thiourea and amine functionalities, directly adjacent to the
neighbouring stereogenic carbon centers of the chiral linker.
The formation of enamine intermediate 4a9 from acetone and
primary amine group of catalyst 4a was confirmed using the ESI-
MS method (Fig. 3).
12 For reviews of bifunctional organic catalysts, see: (a) P. I. Dalko and
L. Moisan, Angew. Chem., 2004, 116, 5248, Angew. Chem., Int. Ed.,
2004, 43, 5138; (b) A. Berkessel and H. Gro¨ger, Asymmetric
Organocatalysis: From Biomimetic Concepts to Applications in
Asymmetric Synthesis, Wiley-VCH, Weinheim, 2004; (c) P. M. Pihko,
Angew. Chem., 2004, 116, 2110, Angew. Chem., Int. Ed., 2004, 43, 2062;
(d) J. Seayad and B. List, Org. Biomol. Chem., 2005, 3, 719.
13 For chiral urea- and thiourea-catalyzed reactions, see: (a) M. S. Sigman
and E. N. Jacobsen, J. Am. Chem. Soc., 1998, 120, 4901; (b)
M. S. Sigman, P. Vachal and E. N. Jacobsen, Angew. Chem., 2000,
112, 1336, Angew. Chem., Int. Ed., 2000, 39, 1279; (c) P. Vachal and
E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124, 10012; (d) G. D. Joly and
E. N. Jacobsen, J. Am. Chem. Soc., 2004, 126, 4102; (e) M. S. Taylor
and E. N. Jacobsen, J. Am. Chem. Soc., 2004, 126, 10558; (f) T. P. Yoon
and E. N. Jacobsen, Angew. Chem., 2005, 117, 470, Angew. Chem., Int.
Ed., 2005, 44, 466; (g) T. Okino, S. Nakamura, T. Furukawa and
Y. Takemoto, Org. Lett., 2004, 6, 625; (h) T. Okino, Y. Hoashi and
Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672; (i) T. Okino,
Y. Hoashi, T. Furukawa, X. Xu and Y. Takemoto, J. Am. Chem. Soc.,
2005, 127, 119; (j) Y. Hoashi, T. Okino and Y. Takemoto, Angew.
Chem., 2005, 117, 4100, Angew. Chem., Int. Ed., 2005, 44, 4032; (k)
Y. Hoashi, T. Yabuta and Y. Takemoto, Tetrahedron Lett., 2004, 45,
9185; (l) A. Berkessel, F. Cleemann, S. Mukherjee, T. N. Mu¨ller and
J. Lex, Angew. Chem., 2005, 117, 817, Angew. Chem., Int. Ed., 2005, 44,
807; (m) A. Berkessel, S. Mukherjee, F. Cleemann, T. N. Mu¨ller and
J. Lex, Chem. Commun., 2005, 1898; (n) J. Wang, H. Li, X. Yu, L. Zu
and W. Wang, Org. Lett., 2005, 7, 4293; (o) S. H. McCooey and
S. J. Connon, Angew. Chem., 2005, 117, 6525, Angew. Chem., Int. Ed.,
2005, 44, 6367; (p) J. Ye, D. J. Dixon and P. S. Hynes, Chem. Commun.,
2005, 4481; (q) B.-J. Li, L. Jiang, M. Liu, Y.-C. Chen, L. S. Ding and
Y. Wu, Synlett, 2005, 603; (r) B. Vakulya, S. Varga, A. Csa´mpai and
T. Soo´s, Org. Lett., 2005, 7, 1967.
From these results, we propose the plausible transition-state
model (A), which reasonably explains the relative (syn) and
absolute configuration of the Michael adducts 11 and 12 (Fig. 3).
Finally, to explain the inversion of diastereoselectivity with
methylethylketone as a substrate, we assumed the formation of the
Z enamine intermediate B (Fig. 3).
In summary, we have demonstrated for the first time that
primary amine derived chiral thioureas can catalyze the asym-
metric nitro-Michael addition, giving high yields (82–99%),
enantioselectivities (90–99% ee) and good diastereoselectivities for
a wide range of ketones and aromatic nitroolefines.
14 S. B. Tsogoeva, D. A. Yalalov, M. J. Hateley, C. Weckbecker and
K. Huthmacher, Eur. J. Org. Chem., 2005, 4995.
15 For example see: A. Co´rdova, W. Zou, I. Ibrahem, E. Reyes,
M. Engqvist and W.-W. Liao, Chem. Commun., 2005, 3586. For review
of asymmetric aminocatalysis, see: B. List, Synlett, 2001, 1675.
16 (a) P. R. Schreiner and A. Wittkopp, Org. Lett., 2002, 4, 217; (b)
A. Wittkopp and P. R. Schreiner, Chem.–Eur. J., 2003, 9, 407; (c)
P. R. Schreiner, Chem. Soc. Rev., 2003, 32, 289.
The authors gratefully acknowledge the Deutsche
Forschungsgemeinschaft
(Schwerpunktprogramm
1179
‘‘Organokatalyse’’) for generous financial support.
17 (a) J. Hine, Acc. Chem. Res., 1978, 11, 1; (b) J. Hine, J. Org. Chem.,
1981, 46, 649; (c) S. Saito and H. Yamamoto, Acc. Chem. Res., 2004, 37,
570.
Notes and references
1 For a review of asymmetric Michael addition to nitroolefins, see:
O. M. Berner, L. Tedeschi and D. Enders, Eur. J. Org. Chem., 2002,
1877.
2 K. Sakthivel, W. Notz, T. Bui and C. F. Barbas, III, J. Am. Chem. Soc.,
2001, 123, 5260.
3 B. List, P. Pojarliev and H. J. Martin, Org. Lett., 2001, 3, 2423.
18 We found that the combination of AcOH (0.15 equiv.) and H2O
(2 equiv.) is optimal among the set of tested additives (H2O; H2O–
AcOH; H2O–NH4Cl;8a PhCOOH;8a L-Asp; (R)-(2)-2-phenylpropionic
acid; (S)-(+)-2-phenylpropionic acid) for the addition of acetone to trans-
b-nitrostyrene.
19 Y. Xu and A. Co´rdova, Chem. Commun., 2006, 460.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 1451–1453 | 1453