must be carried out to incorporate the requisite silyl group,
and the use of 1-2 equiv of a strong acid (e.g., camphor-
sulfonic acid, TMSOTf) is often required.5
In the course of these studies, we noted that, when 1 is
subjected to a particular batch of Mo-based alkylidene 3,10
unsaturated pyrans 2a, 2b, and 2c are formed efficiently and
diastereoselectively (>98% de, as judged by analysis of 400
MHz 1H NMR spectra) instead of the expected ring-closing
metathesis (RCM) product (Scheme 1).
An alternative protocol, developed by Hart and Rych-
novsky,6 involves the formation of oxocarbenium ions,
generated by reaction of an enol ether with an acid, that is
then intercepted by an unfunctionalized alkene (i.e., not
activated by an R-silyl group); such a strategy is attractive
since it does not require silyl group activation. To the best
of our knowledge, an example of an efficient catalytic variant
of the latter approach has not yet been reported.
Scheme 1. Initial Observations with Mo-Based Alkylidenes
Research in these laboratories, during the past several
years, has focused on the design and development of a range
of new metal-based chiral catalysts and methods for dia-
stereo- and enantioselective synthesis of chiral pyrans.7 In
this communication, we report an efficient, practical, and
highly stereoselective protocol that involves the use of a
simple and inexpensive Brønsted superacid catalyst for
conversion of unsaturated enol ethers to cis-2,6-disubstituted-
4-methylene tetrahydropyrans: six-membered heterocyclic
units found in a variety of biologically active natural
products, such as dactylolide and zampanolide (shown
below).8 Thus, low catalyst loadings (e0.01 mol %; turnover
number ) 10 000) of commercially available triflic acid
(TfOH, pKa ) -13 to -14) initiate stereoselective formation
of the desired pyrans. Catalytic reactions are typically carried
out at room temperature (22 °C) and proceed to >98%
conversion in only a few minutes.
Despite the appreciable Lewis acidity of Mo-based alkyli-
denes, particularly those bearing electron-deficient ligands,
such as dichloroaryl imidate 3,11 we suspected that this and
related olefin metathesis precatalysts may not be responsible
for promoting cyclizations. Accordingly, we systematically
investigated the reaction of 1 in the presence of a range of
Mo-based alkylidenes (5 mol % loading in all cases),
including freshly prepared chiral complexes 3, which only
promote RCM. In contrast, their Mo triflate precursors (e.g.,
4, Scheme 1) proved to be effective cyclization catalysts.
Next, we established that other metal triflates, such as
Ag(OTf), Hg(OTf)2, Zn(OTf)2, Mg(OTf)2, Sn(OTf)2, and
Al(OTf)3, can be used as catalysts, whereas Yb(OTf)3, which
is relatively stable to hydrolytic decomposition12 (does not
readily generate TfOH through exposure with moisture), fails
to promote conversion of 1 to 2a-c (<2% conv). Finally,
we determined that, in the above studies, cyclization ef-
ficiency (% conv) and reaction times are dependent on the
age and quality of the metal triflate used. Collectively, the
The present protocol was discovered inadvertently during
investigations concerning the development of Mo-catalyzed
asymmetric ring-closing metathesis (ARCM) of enol ethers.9
7155. (e) Bolla, M. L.; Patterson, B.; Rychnovsky, S. D. J. Am. Chem.
Soc. 2005, 127, 16044-16045. (f) Shin, C.; Chavre, S. N.; Pae, A. N.;
Cha, J. H.; Koh, H. Y.; Chang, M. H.; Choi, J. H.; Cho, Y. S. Org. Lett.
2005, 7, 3283-3285.
(5) For catalytic Prins reactions that involve acetals as oxocarbenium
ion precursors, see: Aubele, D. L.; Lee, C. A.; Floreancig, P. E. Org. Lett.
2003, 5, 4521-4523 and references therein.
(6) (a) Hart, D. J.; Bennett, C. E. Org. Lett. 2003, 5, 1499-1502. (b)
Patterson, B.; Marumoto, S.; Rychnovsky, S. D. Org. Lett. 2003, 5, 3163-
3166. (c) Bolla, M. L.; Patterson, B.; Rychnovsky, S. D. J. Am. Chem.
Soc. 2005, 127, 16044-16045.
(8) For recent stereoselective total syntheses of zampanolide and dac-
tylolide, see: (a) Smith, A. B., III; Safonov, I. G.; Corbett, R. M. J. Am.
Chem. Soc. 2002, 124, 11102-11113. (b) Hoye, T. R.; Hu, M. J. Am. Chem.
Soc. 2003, 125, 9576-9577. (c) Aubele, D. L.; Wan, S.; Floreancig, P. E.
Angew. Chem., Int. Ed. 2005, 44, 3485-3488. (d) Jennings, M. P.; Ding,
F. Org. Lett. 2005, 7, 2321-2324. (d) Sanchez, C. C.; Keck, G. E. Org.
Lett. 2005, 7, 3053-3056.
(7) For representative examples, see: (a) Morken, J. P.; Didiuk, M. T.;
Visser, M. S.; Hoveyda, A. H. J. Am. Chem. Soc. 1994, 116, 3123-3124.
(b) Johannes, C. W.; Visser, M. S.; Weatherhead, G. S.; Hoveyda, A. H. J.
Am. Chem. Soc. 1998, 120, 8340-8347. (c) Zhu, S. S.; Cefalo, D. R.; La,
D. S.; Jamieson, J. Y.; Davis, W. M.; Hoveyda, A. H.; Schrock, R. R. J.
Am. Chem. Soc. 1999, 121, 8251-8259. (d) Weatherhead, G. S.; Ford, J.
G.; Alexanian, E. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc.
2000, 122, 1828-1829. (e) Cefalo, D. R.; Kiely, A. F.; Wuchrer, M.;
Jamieson, J. Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2001,
123, 3139-3140. (f) Gillingham, D. G.; Kataoka, O.; Garber, S. B.;
Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 12288-12290. (g) Brown,
M. K.; Degrado, S. J.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2005, 44,
5306-5310.
(9) Lee, A.-L.; Malcolmson, S. J.; Puglisi, A.; Schrock, R. R.; Hoveyda,
A. H. J. Am. Chem. Soc. 2006, 128, 5153-5157.
(10) Weatherhead, G. S.; Houser, J. H.; Ford, J. G.; Jamieson, J. Y.;
Schrock, R. R.; Hoveyda, A. H. Tetrahedron Lett. 2000, 41, 9553-9559.
(11) For a comprehensive review of chemistry of early transition metal
alkylidenes, see: Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed.
2003, 42, 4592-4633.
(12) (a) Kobayashi, S.; Hachiya, I. J. Org. Chem. 1994, 59, 3590-3596.
(b) Kobayashi, S.; Nagayama, S.; Busujima, T. J. Am. Chem. Soc. 1998,
120, 8287-8288.
1872
Org. Lett., Vol. 8, No. 9, 2006