C O M M U N I C A T I O N S
The results reported here are surprising, considering the size of
the ring of the S-N acyl-transfer intermediate. It is plausible that
the sugar moiety affects the proximity of the N-terminal amine to
the thioester, which allows for the acyl transfer to occur despite
the large ring size. Efforts to determine the effects of the
configuration at the anomeric center and the N-linked sugar on the
ligation rate are currently being pursued in our laboratory.
In summary, we have demonstrated that the sugar moiety of a
glycopeptide modified with a thiol handle at the C-2 position can
assist in the ligation of a cysteine-free glycopeptide with a thioester
peptide. Upon completion, the thiol handle can be reduced to the
acetamide moiety. Together, this sequence of reactions displays
an attractive potential in glycopeptides and glycoproteins synthesis.
The scope, mechanism, and applications of the sugar-assisted
ligation in the synthesis of glycopeptides and glycoproteins are
currently under investigation.
Acknowledgment. We thank the NIH and Skaggs Institute for
Chemical Biology for financial support. S.F. is grateful for a
postdoctoral fellowship provided by the Deutsche Akademische
Austauschdienst (DAAD).
Figure 3. Analytical HPLC of the ligation reaction (Table 1, entry 1). (A)
Reaction at 0 h: peak a, glycopeptide 2; peak b, impurity from thioester
peptide substrate; peak c, thioester peptide substrate. (B) Ligation reaction
after 8 h: peak a, impurity from tris(2-carboxethyl)phosphine hydrochloride;
peak b, unreacted glycopeptide 2; peak c, thioester substrate hydrolysis
product; peak d, the desired product with the expected mass of 1147.2 Da
(see inset, MALDI-TOF/MS).
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
References
Table 1. Effect of the C-Terminal Amino Acid of Peptide Thioester
on the Ligation Rate
(1) (a) Kemp, D. S. Biopolymers 1981, 20, 1793-1804. (b) Kemp D. S.;
Carey, R. I. J. Org. Chem. 1993, 58, 2216-2222.
(2) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994,
266, 776-779.
(3) (a) Beligere, G. S.; Dawson, P. E. J. Am. Chem. Soc. 1999, 121, 6332-
6333. (b) Yan, L. Z.; Dawson, P. E. J. Am. Chem. Soc. 2001, 123, 526-
533. (c) Saxon, E.; Armstrong, J. I.; Bertozzi, C. R. Org. Lett. 2000, 2,
2141-2143. (d) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett.
2000, 2, 1939-1941.
(4) For selected examples, see: (a) Canne, L. E.; Bark, S. J.; Kent, S. B. H.
J. Am. Chem. Soc. 1996, 118, 5891-5896. (b) Low, D. W.; Hill, M. G.;
Carrasco, M. R.; Kent, S. B. H.; Botti, P. Proc. Natl. Acad. Sci. U.S.A.
2001, 98, 6554-6559. (c) Offer, J.; Boddy, C.; Dawson, P. E. J. Am.
Chem. Soc. 2002, 124, 4642-4646. (d) Macmillan, D.; Anderson, D. W.
Org. Lett. 2004, 6, 4659-4662. (e) Lu, Y.-A.; Tam, J. P. Org. Lett. 2005,
7, 5003-5006.
(5) For related reviews, see: (a) Seitz, O. ChemBioChem 2000, 1, 214-246.
(b) Grogan, M. J.; Pratt, M. R.; Marcaurelle, L. A.; Bertozzi, C. R. Annu.
ReV. Biochem. 2002, 71, 593-634. (c) Davis, B. G. Chem. ReV. 2002,
102, 579-602. (d) Liu, L.; Bennett, C. S.; Wong, C.-H. Chem. Commun.
2006, 1, 21-33.
ligation
junction
mass obsd,a
calcd (Da)
entry
-AA-
t1 2 (h)
/
1
2
4
4
Gly
His
Ala
Val
Gly-Gly
His-Gly
Ala-Gly
Val-Gly
∼5
∼5
1146.4 ( 0.2, 1146.52
1126.5 ( 0.2, 1226.55
1160.4 ( 0.2, 1160.53
1188.5 ( 0.2, 1188.56
∼10
>48
a
Characterized by ESI-MS.
(6) (a) Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.;
Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684-11689. (b) Warren,
J. D.; Miller, J. S.; Keding, S. J.; Danishefsky, S. J. J. Am. Chem. Soc.
2004, 126, 6576-6578. (c) Macmillan, D.; Bertozzi, C. R. Angew. Chem.,
Int. Ed. 2004, 43, 1355-1359. (d) Tolbert, T. J.; Franke, D.; Wong, C.-
H. Bioorg. Med. Chem. 2005, 13, 909-915. (e) Hackenberger, C. P. R.;
Friel, C. T.; Radford, S. E.; Imperiali, B. J. Am. Chem. Soc. 2005, 127,
12882-12889.
generality of our approach showed that the N-terminal amino acid
is not limited only to a glycine residue. We have found that
extending peptide 1 with alanine and serine gave results similar to
those obtained in the glycine case.
By applying the desulfurization reaction developed by Dawson
and co-workers,3b we reduced the acetamido thiol handle in the
ligation product (Table 1, entry1) to the corresponding acetamide
moiety. The reaction was completed within 1 h using Pd/Al2O3
under hydrogen to give the unmodified glycopeptide in 80% isolated
yield. A mass decrease of 32 Da from the starting material was
observed, as expected for the loss of one sulfur atom (see Supporting
Information).
(7) For examples, see: (a) Liu, H.; Wang, L.; Brock, A.; Wong C.-H.; Schultz,
P. G. J. Am. Chem. Soc. 2003, 125, 1702-1703. (b) Zhang, Z.;
Gildersleeve, J.; Yang, Y.-Y.; Xu, R.; Loo, J. A.; Uryu, S.; Wong, C.-H.;
Schultz, P. G. Science 2004, 303, 371-373. (c) Xu, R.; Hanson, S. R.;
Zhang, Z.; Yang, Y.-Y.; Schultz, P. G.; Wong, C.-H. J. Am. Chem. Soc.
2004, 126, 15654-15655.
(8) We prepared the peptide R-phenyl thioester and used it directly in the
ligation mixture, which was superior in terms of rate acceleration (t1/2
2 h). However, we preferred preparing this peptide thioester in situ.
≈
JA061165W
9
J. AM. CHEM. SOC. VOL. 128, NO. 17, 2006 5627