ORGANIC
LETTERS
2006
Vol. 8, No. 10
2063-2066
Macrocycloadditions Leading to
Conformationally Restricted Small
Molecules
Ryan E. Looper, Daniela Pizzirani, and Stuart L. Schreiber*
Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology,
HarVard UniVersity, Broad Institute of HarVard and MIT,
Cambridge, Massachusetts 02138
stuart_schreiber@harVard.edu
Received February 23, 2006
ABSTRACT
The Cu(I)-catalyzed cycloaddition of alkynes and azides (click reaction) provides a robust method for the construction of macrocyclic small
molecules via an intramolecular macrocycloaddition. A three-subunit system has been used to explore the tolerance of this macrocycloaddition
to variations of stereochemistries and substituents.
Restricting conformational freedom in small molecules1 can
lead to significant changes in assay performance, as was
quantitated in a recent study using multidimensional screen-
ing.2 For the class of compounds investigated, the presence
of a macrocycle and the stereochemistry of substituents on
the macrocycle were primary determinants of the observed
global activity patterns. Elucidating these relationships is part
of a larger effort to correlate chemical descriptors of small
molecules to assay measurement outcomes.3
the current research with the idea that the substantial
enthalpic gains associated with forming an aromatic triazole
(∆Hf ) 60 kcal/mol) might provide a useful means for
synthesizing macrocycles from substrates that vary in ster-
eochemistry and substitution patterns.5 We were also attracted
to the mild conditions reported for the Cu-catalyzed cy-
cloaddition of azides with alkynes (click reaction) that yields
this functionality.6 This strategy has previously proven
successful in the head-to-tail cyclodimerization of peptides,7
polysaccharides,8 and carbohydrate/amino acid hybrids.9 An
The preparation of macrocyclic compounds in library
syntheses can be challenging, often requiring either the
incorporation of conformational biasing elements or the
empirical optimization of reaction conditions.4 We initiated
(5) Williams, C. I.; Whitehead, M. A. THEOCHEM 1997, 393, 9-24.
(6) (a) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002,
67, 3057-3064. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless,
K. B. Angew. Chem., Int. Ed. 2002, 41, 2596-2599. (c) Pe´rez-Balderas,
F.; Ortega-Mun˜oz, O.; Morales-Sanfrutos, J.; Herna´ndez-Mateo, F.; Calvo-
Flores, F. G.; Calvo-As´ın, J. A.; Isac-Garcia´, J.; Santoyo-Gonza´les, F. Org.
Lett. 2003, 5, 1951-1954.
(1) (a) Burger, M. T.; Bartlett, P. A. J. Am. Chem. Soc. 1997, 119,
12697-12698 and references therein. (b) For a review in the context of
peptides, see: Davies, J. S. J. Pept. Sci. 2003, 9, 471-501.
(2) Kim, Y.-K.; Arai, M. A.; Arai, T.; Lamenzo, J. O.; Dean, E. F.;
Patterson, N.; Patterson, N.; Clemons, P. A.; Schreiber, S. L. J. Am. Chem.
Soc. 2004, 126, 14740-14745.
(3) Schreiber, S. L. Nat. Chem. Biol. 2005, 1, 64-66.
(4) Lee, D.; Sello, J. K.; Schreiber, S. L. J. Am. Chem. Soc. 1999, 121,
1, 106480-10649 and references therein.
(7) (a) Punna, S.; Kuzelka, J.; Wang, O.; Finn, M. G. Angew. Chem.,
Int. Ed. 2005, 44, 2215-2220. (b) van Maarseveen, J. H.; Horne, W. S.;
Ghadiri, M. R. Org. Lett. 2005, 7, 4503-4506.
(8) Bodine, K. D.; Gin, D. Y.; Gin, M. S. J. Am. Chem. Soc. 2004, 126,
1638-1639.
(9) Billing, J. F.; Nilsson, U. J. J. Org. Chem. 2005, 70, 4847-4850.
10.1021/ol0604724 CCC: $33.50
© 2006 American Chemical Society
Published on Web 04/11/2006