A R T I C L E S
Rhile et al.
widespread involvement of tyrosyl radicals in enzymatic
processes.12 They have been implicated as intermediates in class
I ribonucleotide reductases,13 photosystem II,14 prostaglandin
H synthases 1 and 2,15 cytochrome c oxidase,16 galactose
oxidase,17 amine oxidases,18 and other systems.12 In many cases,
the phenoxyl radical is generated from the phenol by outer-
sphere electron transfer, with release of the proton to a nearby
residue (histidine, arginine, lysine, etc.) or to a hydrogen-bonded
network.12 An interesting example is the oxidation of tyrosine
160 of the D2 subunit (YZ) in Photosystem II by long-range
proton transfer (PT), in some cases to bulk solution, while the
HOAr-B compounds reported here have an intramolecular PT
in aprotic media. The use of aprotic media and a strong initial
hydrogen bond provides the advantage of being able to keep
track of the proton but may limit the generality of the
conclusions. More studies are required to model biological and
chemical systems with weaker hydrogen-bonding interactions
and systems in which the formation of charged intermediates
is more facile (perhaps with a higher local effective dielectric
constant). Our studies and the model systems mentioned above
all conclude that concerted proton-electron transfer is the
dominant pathway under most conditions, but Hammarstro¨m
and co-workers have shown that a proton-first mechanism takes
over at high pH, where deprotonation of tyrosine is energetically
accessible.8 Similarly, elegant work by Okamura and others has
indicated stepwise mechanisms for quinone reduction in pho-
tosystem I.20
electron transfer to the light-induced chlorophyll radical cation
+ 19
P680
.
The phenolic proton of YZ is likely transferred to a
hydrogen-bonded histidine (His190 of subunit D1). This tyrosyl
radical then is involved in the oxidation of the manganese cluster
and eventually the conversion of water to O2.
The HOAr-B systems examined here were designed to model
such phenol oxidations with concomitant proton transfer. Related
model studies include oxidation of tyrosine by a pendant
photogenerated [Ru(bpy)3]3+ or a photoexcited ReI center8,9 and
electron transfer from phenol-pyridine adducts to photoexcited
C60.7 These previous studies have all involved intermolecular
The motif of a tyrosine hydrogen-bonded to a base may be
viewed as a biological redox cofactor. A variety of other electron
transfer cofactors, such as iron-sulfur clusters, hemes, and
quinones, have been studied and understood on the basis of the
Marcus-Hush theory of electron transfer.21 We have previously
shown that rate constants for hydrogen atom transfer reactions
are in many cases well predicted by the Marcus cross relation.22
This report shows that Marcus theory can also be applied to
non-HAT CPET reactions, and it describes the characteristics
of the HOAr-B compounds as electron transfer reagents,
highlighting the influence of the PT on the thermodynamics
and kinetics of electron transfer. The results are also discussed
in light of the more recent and more sophisticated theoretical
models of CPET.23 A preliminary report has described the
oxidation of one of the phenols, HOAr-NH2.24
(8) (a) Magnuson, A.; Berglund, H.; Korall. P.; Hammarstro¨m, L.; Åkermark,
B.; Styring, S.; Sun, L. J. Am. Chem. Soc. 1997, 119, 10720-5. (b) Sjodin,
M.; Styring, S.; Åkermark, B.; Sun, L.; Hammarstro¨m, L. J. Am. Chem.
Soc. 2000, 122, 3932-3936. (c) Sjo¨din, M.; Styring, S.; Wolpher, H.; Xu,
Y.; Sun, L.; Hammarstro¨m, L. J. Am. Chem. Soc. 2005, 127, 3855-3863.
(d) Sjo¨din, M.; Ghanem, R.; Polivka, T.; Pan, J.; Styring, S.; Sun, L.;
Sundstro¨m, V.; Hammarstro¨m, L. Phys. Chem. Chem. Phys. 2004, 6, 4851-
4858.
(9) Reece, S. Y.; Nocera, D. G. J. Am. Chem. Soc. 2005, 127, 9448-9458.
(10) (a) Shukla, D.; Young, R. H.; Farid, S. J. Phys. Chem. A 2004, 108, 10386-
10394. (b) Turro, C.; Chang, C. K.; Leroi, G. E.; Cukier, R. I.; Nocera, D.
G. J. Am. Chem. Soc. 1992, 114, 4013. (c) Chang, M. C. Y.; Yee, C. S.;
Nocera, D. G.; Stubbe, J. J. Am. Chem. Soc. 2004, 126, 16702-16703. (d)
Lehmann, M. W.; Evans, D. H. J. Phys. Chem. B 2001, 105, 8877-8884.
(e) Mayer, J. M.; Hrovat, D.; Thomas, J. L.; Borden, W. T. J. Am. Chem.
Soc. 2002, 124, 11142-11147. (f) Anglada, J. M. J. Am. Chem. Soc. 2004,
126, 9809-9820. (g) Weatherly, S. C.; Yang, I. V.; Armistead, P. A.; Thorp,
H. H. J. Phys. Chem. B. 2003, 107, 372-378. (h) Stubbe, J.; Nocera, D.
G.; Yee, C. S.; Chang, M. C. Y. Chem. ReV. 2003, 103, 2167-2201. (i)
DiLabio, G. A.; Ingold, K. U. J. Am. Chem. Soc. 2005, 127, 6693-6699.
(j) Huynh, M. H. V.; Meyer, T. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
13138-13141. (k) Meyer, T. J.; Huynh, M. H. V. Inorg. Chem. 2003, 42,
8140-8160.
(11) (a) Kojima, T.; Sakamoto, T.; Matsuda, Y.; Ohkubo, K.; Fukuzumi, S.
Angew. Chem., Int. Ed. 2003, 42, 4951. (b) Haddox, R. M.; Finklea, H. O.
J. Electroanal. Chem. 2003, 550-551, 351.
(12) (a) Stubbe, J.; van der Donk, W. A. Chem. ReV. 1998, 98, 705-762. (b)
Pesavento, R. P.; van der Donk, W. A. AdV. Protein Chem. 2001, 58, 317-
385.
(13) (a) Ehrenberg, A.; Reichard, P. J. Biol. Chem. 1972, 247, 3485-3488. (b)
Sjo¨berg, B.-M.; Reichard, P.; Gra¨slund, A.; Ehrenberg, A. J. Biol. Chem.
1978, 253, 6863-6865. (c) Sahlin, M.; Gra¨slund, A.; Ehrenberg, A.;
Sjo¨berg, B.-M. J. Biol. Chem. 1982, 257, 366-369. (d) Griepenburg, U.;
Lassmann, G.; Auling, G. Free Radical Res. 1996, 26, 473-481.
(14) (a) Barry, B. A.; El-Deeb, M. K.; Sandusky, P. O.; Babcock, G. J. Biol.
Chem. 1990, 265, 20139-20143. (b) Barry, B. A.; Babcock, G. T. Proc.
Natl. Acad. Sci. U.S.A. 1987, 84, 7099-7103.
(15) (a) Tsai, A.-L.; Kulmacz, R. J.; Palmer, G. J. Biol. Chem. 1995, 270,
10503-10508. (b) Tsai, A.-L.; Palmer, G.; Kulmacz, R. J. J. Biol. Chem.
1992, 276, 17753-17759. (c) Tsai, A. L.; Palmer, G.; Xiao, G.; Swinney,
D. C.; Kulmacz, R. J. J. Biol. Chem. 1998, 273, 3888. (d) Hsi, L. C.;
Hoganson, C. W.; Babcock, G. T.; Smith, W. L. Biochem. Biophys. Res.
Commun. 1994, 202, 1592-1598.
Results
1. Syntheses and Characterization of Compounds. The
phenol-amine HOAr-NH2 was synthesized as outlined in
(19) (a) Tommos, C.; Babcock, G. T. Biochim. Biophys. Acta 2000, 1458, 199-
219. (b) Vrettos; J. S.; Limburg, J.; Brudvig, G. W. Biochim. Biophys.
Acta 2001, 1503, 229-245. (c) Renger, G. Biochim. Biophys. Acta 2004,
1655, 195-204. (d) Rappaport, F.; Lavergne, J. Biochim. Biophys. Acta
2001, 1503, 246-259. (e) Nugent, J. H. A.; Rich, A. M.; Evans, M. C. W.
Biochim. Biophys. Acta 2001, 1503, 138-146. (f) Kuhne, H.; Brudvig, G.
W. J. Phys. Chem. B 2002, 106, 8189-8196. (g) Faller, P.; Goussias, C.;
Rutherford, A. W.; Un, S. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 8732-
8735. (h) Ferreira, K. N.; Iverson, T. M.; Maghlaoui, K.; Barber, J.; Iwata,
S. Science 2004, 303, 1831-1838. (i) Zouni, A.; Witt, H.-T.; Kern, J.;
Fromme, P.; Krauss, N.; Saenger, W.; Orth, P. Nature 2001, 409, 739-
743. (j) Rhee, K.-H.; Morris, E. P.; Barber, J.; Kuhlbrandt, W. Nature 1998,
396, 283-286. (k) Haumann, M.; Mulkidjanian, A.; Junge, W. Biochemistry
1999, 38, 1258-1267. (l) Ka´lma´n, L.; LoBrutto, R.; Allen, J. P.; Williams,
J. C. Nature 1999, 402, 696-699. (m) Petrouleas, V.; Koulougliotis, D.;
Ionnidis, N. Biochemistry 2005, 44, 6723-6728.
(20) Graige, M. S.; Paddock, M. L.; Bruce, J. M.; Feher, G.; Okamura, M. Y.
J. Am. Chem. Soc. 1996, 118, 9005-9016.
(16) (a) Ferguson-Miller, S.; Babcock, G. T. Chem. ReV. 1996, 96, 2889-2907.
(b) Gamelin, D. R.; Randall D. W.; Hay, M. T.; Houser, R. P.; Mulder, T.
C.; Canters, G. W.; de Vries, S.; Tolman, W. B.; Lu, Y.; Solomon, E. I. J.
Am. Chem. Soc. 1998, 120, 5246-5263 and references therein. (c)
Proshlyakakov, D. A.; Pressler, M. A.; DeMaso, C.; Leykam, J. F.; DeWitt,
D. L.; Babcock, G. T. Science 2000, 290,1588-1591.
(21) (a) Page, C. C.; Moser, C. C.; Chen, C.; Dutton, L. Nature 1999, 402,
47-5217. (b) Barbara, P. F.; Meyer, J. T.; Ratner, M. A. J. Phys. Chem.
1996, 100, 13148-13168.
(22) Roth, J. P.; Yoder, J. C.; Won, T.-J.; Mayer, J. M. Science 2001, 294,
2524-2526.
(17) Whittaker, M. M.; Whittaker, J. W. J. Biol. Chem. 1990, 265, 9610-9613.
(18) (a) Janes, S. M.; Mu, D.; Wemmer, D.; Smith, A. J.; Kaur, S.; Maltby, D.;
Burlingame, A. L.; Klinman, J. P. Science 1990, 248, 981-987. (b) Janes,
S. M.; Palcic, M. M.; Scaman, C. H.; Smith, A. J.; Brown, D. E.; Dooley,
D. M.; Mure, M.; Klinman, J. P. Biochemistry 1992, 31, 12147-12154.
(c) Cooper, R. A.; Knowles, P. F.; Brown, D. E.; McGuirl, M. A.; Dooley,
D. M. Biochem. J. 1992, 288, 337-340. (d) Brown, D. E.; McGuirl, M.
A.; Dooley, D. M.; Janes, S. M.; Mu, D.; Klinman, J. P. J. Biol. Chem.
1991, 266, 4049-4051. (e) Mu, D.; Janes, S. M.; Smith, A. J.; Brown, D.
E.; Dooley, D. M.; Klinman, J. P. J. Biol. Chem. 1992, 267, 7979-7982.
(23) (a) Swalina, C.; Pak, M. V.; Hammes-Schiffer, S. Chem. Phys. Lett. 2005,
404, 394-399. (b) Hammes-Schiffer, S.; Iordanova, N. Biochim. Biophys.
Acta 2004, 1655, 29-36. (c) Hammes-Schiffer, S. Acc. Chem. Res. 2001,
34, 273-281. (d) Hammes-Schiffer, S. ChemPhysChem 2002, 33-42. (e)
Cukier, R. I. J. Phys. Chem. B 2002, 106, 1746-1757. (f) Georgievskii,
Y.; Stuchebrukhov, A. A. J. Chem. Phys. 2000, 113, 10438-10450. (g)
Kuznetsov, A. M.; Ulstrup, J. Can. J. Chem. 1999, 77, 1085-1096. (h)
Krishtalik, L. I. Biochim. Biophys. Acta 2000, 1458, 6-27. (i) References
1 and 2.
(24) Rhile, I. J.; Mayer, J. M. J. Am. Chem. Soc. 2004, 126, 12718-12719.
9
6076 J. AM. CHEM. SOC. VOL. 128, NO. 18, 2006