C. Blackburn et al. / Bioorg. Med. Chem. Lett. 16 (2006) 2621–2627
2627
3. Della-Zuana, O.; Presse, F.; Ortola, C.; Duhault, J.;
Nahon, J. L.; Levens, N. Int. J. Obesity 2002, 26, 1289.
4. Gomori, A.; Ishihara, A.; Ito, M.; Mashiko, S.; Matsush-
ita, H.; Yumoto, M.; Tanaka, T.; Tokita, S.; Moriya, M.;
Iwassa, H.; Kanatani, A. Am. J. Physiol. Endocrinol.
Metab. 2003, 284, E583.
15. Vandenberg, J. I.; Walker, B. D.; Campbell, T. J. Trends
Pharmacol. Sci. 2001, 22, 240.
16. Blackburn, C.; Lai, S.; Lee, J. G.; Maguire, M.; Patane,
M. A.; LaMarche, M. J.; Cullis, C. A.; Brown, J.;
Vasudevan, A.; Freeman, J. C.; Mulhern, M. M.; Lynch,
J. K.; Gao, J.; Wodka, D.; Souers, A. J.; Iyengar, R.
WO2003106452.
17. Cho, H.; Matsuki, S. Heterocycles 1996, 43, 127.
18. Mekheimer, R. A.; Kappe, T. Heterocycl. Commun. 1998,
4, 131.
5. Shimada, M.; Tritos, N. A.; Lowell, B. B.; Flier, J. S.;
Maratos-Flier, E. Nature 1998, 396, 670.
6. Chen, Y.; Hu, C.; Hsu, C-K.; Zhang, Q.; Bi, C.; Asnicar,
M.; Hsiung, H. M.; Fox, N.; Slieker, L. J.; Yang, D. D.;
Heiman, M. L.; Sh, Y. Endocrinology 2002, 143, 2469.
7. Marsh, D. J.; Weingarth, D. T.; Novi, D. E.; Chen, H. Y.;
Trumbauer, M. E.; Chen, A. S.; Guan, X.; Jiang, M. M.;
Feng, Y.; Camacho, R. E.; Shen, Z.; Frazier, E. G.; Yu,
H.; Metzger, J. M.; Kuca, S. J.; Shearman, L. P.; Gopal-
Truter, S.; MacNeil, D. J.; Strack, A. M.; MacIntyre, D.
E.; Van der, P. L. H. T.; Qian, S. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99(5), 3240.
8. Borowsky, B.; Durkin, M. M.; Ogozalek, K.; Marzabadi,
M. R.; DeLeon, J.; Lagu, B.; Heurich, R.; Lichtblau, H.;
Shaposhnik, Z.; Daniewska, I.; Blackburn, T. P.; Bran-
chek, T. A.; Gerald, C.; Vaysse, P. J.; Forray, C. Nat.
Med. 2002, 8, 779.
9. Takekawa, S.; Asami, A.; Ishihara, Y.; Terauchi, J.; Kato,
K.; Shiimomura, Y.; Mori, M.; Murakoshi, H.; Kato, K.;
Suzuki, N.; Nishimura, O.; Fujino, M. Eur. J. Pharmacol.
2002, 438, 129.
10. Souers, A. J.; Gao, J.; Brune, M.; Bush, E.; Wodka, D.;
Vasudevan, A.; Judd, A. S.; Mulhern, M.; Brodijan, S.;
Dayton, B.; Hernandez, L.; Collins, C. A.; Kym, P. R. J.
Med. Chem. 2005, 48, 1318.
19. Muchowski, J. M.; Venuti, M. C. J. Org. Chem. 1980, 45,
4798.
20. (a) Wani, M. C.; Campbell, H. F.; Brine, G. A.; Kepler,
J. A.; Wall, M. E.; Levine, S. G. J. Am. Chem. Soc.
1972, 94, 3631; (b) Magnus, P.; Rodrigues-Lopez, J.;
Mulholland, K.; Matthews, I. J. Am. Chem. Soc. 1992,
114, 382.
21. Bagley, J. R.; Riley, T. N. J. Heterocycl. Chem. 1982, 19,
485.
22. Displacement of [125I]-MCH from MCHr1 expressed in
IMR-32 (I3.4.2) cells (MCH binding Kd = 0.66 0.25 nM,
Bmax = 0.40 0.08 picomol/mg).
23. Inhibition of MCH-mediated Ca2+ release in whole IMR-
32 cells (MCH EC50 = 62.0 3.6 nM). All values are mean
values SEM and are derived from at least three inde-
pendent experiments (all duplicate).
24. HEK-293 cells that were stably transfected with hERG
cDNA were obtained according to Zhou, Z.; Gong, Q.;
Ye, B.; Fan, Z.; Makielski, J. C.; Robertson, G. A.
Biophys. J. 1998, 74, 230. Membrane homogenates were
prepared from cell pellets, suspended in 50 mM Tris–HCl
buffer (pH 7.4) containing 10 mM KCl and 1 mM MgCl2,
and centrifuged at 4 °C.
25. The hERG binding assay was conducted as described in:
(a) Finlayson, K.; Sharkey, J. In Optimization in Drug
Discovery; Yan, Z., Caldwell, G. W., Eds.; Humana Press:
Totowa, NJ, 2004; pp 353–368; (b) Diaz, G. J.; Daniell,
K.; Leitza, S. T.; Martin, R. L.; Su, Z.; McDermott, J. S.;
Cox, B. F.; Gintant, G. A. J. Pharmacol. Toxicol. Methods
2004, 50, 187.
11. Ma, V. V.; Balan, C.; Tempest, P. A.; Hulme, C.; Bannon,
T. Abstract of Papers, 224th National Meeting of the
American Chemical Society, Boston, MA, 2002, August
18–22, paper MEDI-343.
12. Vasudevan, A.; Verzal, M. K.; Wodka, D.; Souers, A. J.;
Blackburn, C.; Lai, S. J.; Che, J. L.; Brodijan, S.; Dayton,
B.; Govek, E.; Daniels, T.; Geddes, B.; Marsh, K. C.;
Hernandez, L. E.; Collins, C. A.; Kym, P. R. Bioorg. Med.
Chem. Lett. 2005, 15, 3412.
13. Vasudevan, A.; LaMarche, M.; Blackburn, C.; Che, J. L.;
Cullis, C.; Lai, S.; Marsilje, T.; Patane, M.; Souers, A. J.;
Wodka, D.; Geddes, B.; Chen, S.; Brodijan, S.; Falls, D.;
Dayton, B.; Bush, E.; Brune, M.; Shapiro, R. D.; Marsh,
K. C.; Hernandez, L.; Sham, H. L.; Collins, C. A.; Kym,
P. R. Bioorg. Med. Chem. Lett. 2005, 15, 4174.
14. Kym, P. R.; Iyengar, R.; Souers, A. J.; Lynch, J. K.; Judd,
A. S.; Gao, J.; Freeman, J.; Mulhern, M.; Zhao, G.;
Vasudevan, A.; Wodka, D.; Blackburn, C.; Brown, J.;
Che, J. L.; Cullis, C.; Lai, S.; LaMarche, M.; Marsilje, T.;
Roses, J.; Sells, T.; Geddes, B.; Govek, E.; Patane, M.;
Fry, D.; Dayton, B. D.; Brodijan, S.; Falls, D.; Brune, M.;
Bush, E.; Shapiro, R.; Knourek-Segel, V.; Fey, T.;
McDowell, C.; Reinhart, G. A.; Preusser, L. C.; Marsh,
K.; Hernandez, L.; Sham, H. L.; Collins, C. A. J. Med.
Chem. 2005, 48, 5888.
26. It is unclear why these compounds exhibit less
desirable brain permeation properties than earlier
series. For the compounds listed in Table 4, the
respective calculated SlogP and polar surface areas are
3h (5.1, 67.8), 3m (3.8, 77.8), and 4b (3.9, 66.4). These
properties are not atypical for compounds that pass
the blood–brain barrier. Moreover, compounds 3h, 3m,
and 4b were found to have moderate to high perme-
abilities in PAMPA and Caco assays (with no evidence
that the compounds are efflux substrates). It did not
prove possible to conduct receptor occupancy experi-
ments in vivo. Thus, it is unclear why such high total
brain concentrations of MCH1r antagonists, relative to
in vitro potency, are required in order to observe
efficacy12–14 though high binding to brain lipids is one
possibility.