H.-J. Qin et al. / Tetrahedron Letters 47 (2006) 3217–3219
3219
5. (a) Marker, R. E. J. Am. Chem. Soc. 1940, 62, 3350–3352;
(b) Rosenkranz, G.; Mancera, O.; Sondheimer, F.; Djer-
assi, C. J. Org. Chem. 1956, 21, 520–522.
11 in 59% yield. Removal of all of the protecting groups
by sequential treatment of compound 11 with W-2 Ra-
ney nickel at room temperature (for the deprotection of
the benzyl groups) and AcOH–THF–H2O (V/V, 8:8:1)
at 45 °C (for the removal of the silyl groups) afforded
the desired 22-deoxy-OSW-1 (1) in 77% yield. Its spectral
data13 were identical with that reported in the literature.3
6. (a) Tian, W. S. Acta Chim. Sinica 1992, 50, 72–77; (b)
Tian, W. S.; Guan, H. P.; Pan, X. F. Chin. Chem. Lett.
1994, 5, 1013–1016; (c) Tian, W. S.; Guan, H. P.; Pan, X.
F. Chin. J. Chem. 2003, 21, 794–798; (d) Xu, Q. H.; Chen,
L.; Zhao, C. F.; Peng, X. W.; Tian, W. S. Tetrahedron
Lett. 2003, 44, 9375–9377; (e) Xu, Q. H. Chin. Sci. China
Ser. B Chem. 2004, 47, 142–144; (f) Yang, Q. X.; Tian, W.
S.; Pan, S. Acta Chim. Sinica 2004, 62, 2171–2176.
7. Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705.
8. Williams, J. R.; Chai, D.; Wright, D. Steroids 2002, 67,
1041–1044.
9. (a) House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D.
J. Org. Chem. 1969, 34, 2324–2336; (b) House, H. O.; Gall,
M.; Olmstead, H. D. J. Org. Chem. 1971, 36, 2361–2371.
10. Nicolaou, K. C.; Trujillo, J. I.; Chibale, K. Tetrahedron
1997, 53, 8751–8778.
In conclusion, the highly potent anticancer agent 22-
deoxy-OSW-1 was successfully synthesized by utilizing
the intact skeleton of diosgenin in 11 steps in 13.7%
overall yield. This new synthetic strategy resulted in a
remarkable improvement of synthetic efficiency, and
more importantly, it enhanced the utilization efficiency
of the resource compound diosgenin, decreased the pro-
duction of chemical wastes without using some highly
toxic reagents such as OsO4 in the synthesis of 22-
deoxy-OSW-1 compared with known procedures.3
11. Duhamel, P.; Cahard, D.; Poirier, J. M. J. Chem. Soc.,
Perkin Trans. 1 1993, 21, 2509–2511.
12. Disaccharide trichloroacetimidate 12 was synthesized
according to the methods reported in Ref. 4.
References and notes
13. Analytical data for our synthesized 22-deoxy-OSW-1 (1):
25
½aꢁD ꢀ18.6 (c 0.40, CH3OH, lit.3 ꢀ17.2 (c 0.40, CH3OH));
1. Kubo, S.; Mimaki, Y.; Terao, M.; Sashida, Y.; Nikaida,
T.; Ohmato, T. Phytochemistry 1992, 31, 3969–3973.
2. Mimaki, Y.; Kuroda, M.; Kameyama, A.; Sashida, Y.;
Hirano, T.; Oka, K.; Maekawa, R.; Wada, T.; Sugita, K.;
Beutler, A. J. Bioorg. Med. Chem. Lett. 1997, 7, 633–
636.
3. Deng, Lehua; Wu, Hao; Yu, Biao; Jiang, Manrong; Wu,
Jiarui. Bioorg. Med. Chem. Lett. 2004, 14, 2781–2785.
4. (a) Guo, C.; Fuchs, P. L. Tetrahedron Lett. 1998, 39,
1099–1102; (b) Deng, S.; Yu, B.; Hui, Y. J. Org. Chem.
1999, 64, 202–208; (c) Morzychi, J. W.; Gryszkiewicz, A.;
Jastrzebska, I. Tetrahedron Lett. 2000, 41, 3751–3754; (d)
Morzychi, J. W.; Wojtkielewicz, A. Carbohydr. Res. 2002,
337, 1269–1274; (e) Yu, W.; Jin, Z. J. Am. Chem. Soc.
2001, 123, 3367–3370; (f) Yu, W.; Jin, Z. J. Am. Chem.
Soc. 2002, 124, 6576–6583.
1H NMR (300 MHz, C5D5N): d 8.27 (d, J = 9.0 Hz, 2H),
7.02 (d, J = 9.0 Hz, 2H), 6.17 (br s, 1H), 5.85 (t,
0J = 7.5 Hz, 1H), 5.65 (t-like, J = 8.4, 7.8 Hz, 1H), 5.32
(br d, J = 4.5 Hz, 1H), 5.08 (d, J = 8.0 Hz, 1H), 4.73 (d,
J = 7.2 Hz, 1H), 4.59 (br s, 2H), 4.48 (s, 1H), 4.33–4.15
(6H, m), 3.68 (s, 3H), 2.53 (br d, J = 6.8 Hz, 2H), 1.85 (s,
3H), 1.28 (d, J = 6.6 Hz, 3H), 1.22 (s, 3H), 0.93 (s, 3H),
0.81 (s, 3H). 13C NMR (75 MHz, C5D5N): d 169.35,
165.69, 164.00, 142.11, 132.56, 121.40, 114.23, 103.67,
102.60, 88.13, 86.99, 80.85, 76.31, 75.26, 71.95, 71.49,
70.96, 68.67, 67.10, 55.65, 50.64, 49.56, 49.06, 47.27, 43.67,
40.66, 37.98, 37.08, 35.83, 34.29, 33.42, 32.42, 30.83, 29.40,
28.43, 25.83, 23.24, 23.00, 21.20, 19.76, 17.89, 14.49, 13.36;
HRMS (MALDI) calcd for C47H70O14Na [M+Na]+:
881.46480; found: 881.46578.