V. Balraju et al. / Tetrahedron Letters 47 (2006) 3569–3571
3571
C.; Macpherson, D. T. J. Am. Chem. Soc. 1994, 116, 4255–
4267; (c) Werner, H.; Bertleff, W. Chem. Ber. 1983, 116,
823.
References and notes
1. General reviews and books on Pd chemistry: (a) Larhed,
M.; Hallberg, A.; Negishi, E.-I. In Handbook of Organ-
opalladium Chemistry for Organic Synthesis; Wiley-Inter-
science: New York, 2002; Vol. 1, pp 1133–1178; (b) Tsuji,
J. Palladium Reagents and Catalysts; Wiley: Chichester,
1995; (c) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev.
2000, 100, 3009–3066; (d) Heck, R. F. Palladium Reagents
in Organic Synthesis; Academic: New York, 1985; (e)
Herrmann, W. A.; Bo¨hm, V. P. W.; Reisinger, C.-P. J.
Organomet. Chem. 1999, 576, 23–41; (f) Lu, X.; Ma, S.
New Age of Divalent Palladium Catalysts. In Transition
Metal Catalyzed Reactions; Murahashi, S.-I., Davies, S.
G., Eds.; Blackwell Science: Oxford, UK, 1999; p 133,
Chapter 6.
6. It was reported that similar endo-macrocyclization was
observed during enyne metathesis with Grubb’s catalyst.
See, Ref. 7a.
7. (a) Eric, C. H.; Lee, D. J. Am. Chem. Soc. 2003, 125, 9582–
9583; (b) Barrett, A. G. M.; Hennessy, A. J.; Venzouet, R.
L.; Procopiou, P. A.; Seale, P. W.; Stefaniak, S.; Upton,
R. J.; White, A. J. P.; Williams, D. J. J. Org. Chem. 2004,
69, 1028–1037; (c) Susmann, R.; Sauer, R.; Benetti, S.;
Casolari, A.; Trahanovsky, W. S. Chem. Ber. 1989, 122,
1551; (d) Barco, A.; Benetti, A.; Casolari, A.; Manfredini,
S.; Pollini, G. P.; Polo, E.; Zanirato, V. Tetrahedron 1989,
45, 3935–3944; (e) Baran, J.; Mayr, H. Tetrahedron 1989,
45, 3347–3350.
8. Seebach, D.; Overhand, M.; Kuhnle, F. N. M.; Martinoni,
B. Helv. Chim. Acta 1996, 79, 913–941.
2. (a) Trost, B. M.; Krische, M. J. Synlett 1998, 1–16; (b)
Trost, B. M.; Tosate, F. D.; Pinkerton, A. B. Chem. Rev.
2001, 101, 2067–2096; (c) Ojima, I.; Tzamarioudaki, M.;
Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635–662; (d)
Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002,
102, 813–834.
3. (a) Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1988,
110, 1636–1638; (b) Fernandez Rivas, C.; Mendez, M.;
Echavarren, A. M. J. Am. Chem. Soc. 2000, 122, 1221–
1222; (c) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995,
34, 259; (d) Trost, B. M. Acc. Chem. Res. 1990, 23, 34–42;
(e) Zhang, Q.; Lu, X.; Ham, X. J. Org. Chem. 2001, 66,
7676–7684.
4. (a) Balraju, V.; Reddy, D. S.; Periasamy, M.; Iqbal, J. J.
Org. Chem. 2005, 70, 9626–9628; (b) Balraju, V.; Reddy,
D. S.; Periasamy, M.; Iqbal, J. Tetrahedron Lett. 2005, 46,
5207–5210; (c) Reddy, P. R.; Balraju, V.; Madhavn, G. R.;
Banerji, B.; Iqbal, J. Tetrahedron Lett. 2003, 44, 353–356;
(d) Prabhakaran, E. N.; Rao, I. N.; Boruah, A.; Iqbal, J.
J. Org. Chem. 2002, 67, 8247–8250; (e) Nandy, J. P.;
Prabhakaran, E. N.; Kumar, S. K.; Kunwar, A. C.; Iqbal,
J. J. Org. Chem. 2003, 68, 1679–1692; (f) Saha, B.; Nandy,
J. P.; Shukla, S.; Siddiqui, I.; Iqbal, J. J. Org. Chem. 2002,
67, 7858–7860; (g) Rao, I. N.; Boruah, A.; Kumar, S. K.;
Kunwar, A. C.; Ravikumar, K.; Iqbal, J. J. Org. Chem.
2004, 69, 2181–2184, and references cited therein.
5. (a) Moller, B.; Undhein, K. Tetrahedron 1998, 54, 5789–
5804; (b) Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan,
9. Typical procedure for cycloisomerization: 40 mol % of
Pd(OAc)2, and 80 mol % of (o-tolyl)3P were added to
warm HPLC grade acetonitrile (1.5 · 10À3 M) and the
solution refluxed at 110 ꢁC for 30 min. Then, glacial acetic
acid (10 equiv) was added to the refluxing solution. After
10 min the acylic peptide (500 mg) was added in a single
portion and the reaction continued for 15 h at the same
temperature. The reaction mixture was filtered through a
pad of Celite and washed with hot acetonitrile (100 ml).
The filtrate was concentrated and the product was isolated
by flash column chromatography on silica gel using
CH2Cl2/MeOH (98/2) as eluent.
10. All new compounds were characterized from spectral data.
See, Supporting information for details.
11. (a) Larock, R. C. Comprehensive Organic Transformations;
VCH: New York, 1989; pp 241–262; (b) Normant, J. F.. In
Modern Synthetic Methods; Scheffold, R., Ed.; Wiley:
Chichester, 1983; Vol. 3, pp 139–171.
12. The Diels–Alder adduct 9 was isolated as a diastereomeric
mixture.
13. The diastereomers (1:1) formed in these reaction were
cleanly separated using column chromatography. The
stereochemistry of the substituents on the newly formed
cyclohexene ring were not assigned.