efficiency because this molecular ordering would permit good
overlapping of the intermolecular π-orbitals.3c,d,6 Thus,
control of molecular orientation and arrangement is a very
important subject for OFETs. Several groups have reported
strategies for molecular design to achieve the cofacial
π-stacked packing arrangement of acenes,7-9 in which the
introduction of aryl,7c,d bulky trialkylsilylethynyl,8 or halogen
groups9 into acenes at the appropriate positions changes the
packing structure from a herringbone to a cofacial π-stacking
motif. Recently, we have demonstrated that S-S interactions
assist a cofacial π-stacking of 9,10-bis(methylthio)an-
thracene.10,11 Here, we report the synthesis of 6,13-bis-
(alkylthio)pentacenes (3) and the X-ray crystal packing
structure of 6,13-bis(methylthio)pentacene (3a), wherein 3a
is arranged by cofacial π-stacking with S-S and S-π
interactions.
Scheme 1. Formation of 2 by a ZnI2-Mediated Reaction of 1
with Thiols
(2e), respectively, in good yields (Scheme 1). These com-
pounds are freely soluble in CHCl3. This reaction is
applicable to a variety of thiols14 and scarcely produces any
of the cis isomer of 2. In contrast, reaction of the dimesylate
of 1 with n-C8H17SNa (4 equiv) in CH2Cl2-DMF gave a
mixture of 2c and cis-2c in a 2:1 ratio (total 57% yield).
The final step in the synthesis of 6,13-bis(alkylthio)-
pentacenes (3) is dehydrogenative aromatization of 2. The
results are summarized in Table 1. With the goal of
The direct method for the synthesis of 3 may be the
reaction of 6,13-dilithiopentacene with a dialkyl disulfide.
However, 6,13-dilithiopentacene cannot be prepared. The
reaction of 6,13-dihydropentacene with n-BuLi in the pres-
ence of TMEDA also did not generate 6,13-dilithio-6,13-
dihydropentacene. We devised a general synthetic route to
3, the key step of which utilizes the ZnI2-mediated reaction
of a benzylic alcohol with alkylthiol to provide a benzylic
alkyl sulfide.12
Table 1. Formation of 3 by Dehydrogenative Aromatization of
2 with p-Chloranil
The reduction of 6,13-pentacenequinone with NaBH4 (4
equiv) in MeOH at room temperature gave trans-6,13-
dihydroxy-6,13-dihydropentacene (1) in 77% yield.13 The
reaction of 1 with alkylthiols or thiophenol (2.2 equiv) in
the presence of ZnI2 (1 equiv) in CH2Cl2 at room temperature
produced trans-6,13-bis(alkylthio)-6,13-dihydropentacenes
(2a-d) or trans-6,13-bis(phenylthio)-6,13-dihydropentacene
temp/time
(°C/days)
K2CO3
(10 equiv)
yield of 3
entry
R
solvent
(%)
1
2
3
4
5
6
7
a
b
c
c
c
d
e
C6H6
C6H6
CHCl3
C6H6
C6H6
C6H6
CHCl3
60/3
60/2
40/3
60/2
60/2
60/2
40/2
yes
yes
no
66
85
40
10
68
45
79
no
(4) (a) Desiraju, G. R. Crystal Engineering: The Design of Organic
Solids; Elsevier: Amsterdam, 1989; Chapter 4. (b) Holmes, D.; Kuma-
raswamy, S.; Matzger, A. J.; Vollhardt, K. P. C. Chem.-Eur. J. 1999, 5,
3399-3412. (c) Cornil, J.; Calbert, J. P.; Bre´das, J. L. J. Am. Chem. Soc.
2001, 123, 1250-1251. (d) Fritz, S. E.; Martin, S. M.; Frisbie, C. D.; Ward,
M. D.; Toney, M. F. J. Am. Chem. Soc. 2004, 126, 4084-4085.
(5) (a) Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.;
Weber, W. J. Appl. Phys. 2002, 92, 5259-5263. (b) Kelley, T. W.;
Boardman, L. D.; Dunbar, T. D.; Muyres, D. V.; Pellerite, M. J.; Smith, T.
Y. P. J. Phys. Chem. B 2003, 107, 5877-5881. (c) Butko, V. Y.; Chi, X.;
Lang, D. V.; Ramirez, A. P. Appl. Phys. Lett. 2003, 83, 4773-4775. (d)
Jurchescu, O. D.; Baas, J.; Palstra, T. T. M. Appl. Phys. Lett. 2004, 84,
3061-3063.
(6) (a) Swenberg, C. E.; Pope, M. Electronic Processes of Organic
Crystals and Polymers; Oxford University Press: Oxford, NY, 1999. (b)
Curtis, M. D.; Cao, J.; Kampf, J. W. J. Am. Chem. Soc. 2004, 126, 4318-
4328. (c) Bre´das, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem.
ReV. 2004, 104, 4971-5003.
(7) (a) Meng, H.; Bendikov, M.; Mitchell, G.; Helgeson, R.; Wudl, F.;
Bao, Z.; Siegrist, T.; Kloc, C.; Chen, C.-H. AdV. Mater. 2003, 15, 1090-
1093. (b) Tulevski, G. S.; Miao, Q.; Fukuto, M.; Abram, R.; Ocko, B.;
Pindak, R.; Steigerwald, M. L.; Kagan, C. R.; Nuckolls, C. J. Am. Chem.
Soc. 2004, 126, 15048-15050. (c) Sundar, V. C.; Zaumeil, J.; Podzorov,
V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J.
A. Science 2004, 303, 1644-1646. (d) Miao, Q.; Chi, X.; Xiao, S.; Zeis,
R.; Lefenfeld, M.; Siegrist, T.; Steigerwald, M. L.; Nuckolls, C. J. Am.
Chem. Soc. 2006, 128, 1340-1345.
yes
yes
no
establishing the optimum conditions, 2c (R ) n-C8H17) was
chosen as a test substrate (entries 3-5). All reactions were
(8) (a) Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am.
Chem. Soc. 2001, 123, 9482-9483. (b) Anthony, J. E.; Eaton, D. L.; Parkin,
S. R. Org. Lett. 2002, 4, 15-18. (c) Sheraw, C. D.; Jackson, T. N.; Eaton,
D. L.; Anthony, J. E. AdV. Mater. 2003, 15, 2009-2011. (d) Payne, M.
M.; Delcamp, J. H.; Parkin, S. R.; Anthony, J. E. Org. Lett. 2004, 6, 1609-
1612. (e) Payne, M. M.; Odom, S. A.; Parkin, S. R.; Anthony, J. E. Org.
Lett. 2004, 6, 3325-3328. (f) Swartz, C. R.; Parkin, S. R.; Bullock, J. E.;
Anthony, J. E.; Mayer, A. C.; Malliaras, G. G. Org. Lett. 2005, 7, 3163-
3166. (g) Payne, M. M.; Parkin, S. R.; Anthony, J. E.; Kuo, C.-C.; Jackson,
T. N. J. Am. Chem. Soc. 2005, 127, 4986-4987. (h) Payne, M. M.; Parkin,
S. R.; Anthony, J. E. J. Am. Chem. Soc. 2005, 127, 8028-8029.
(9) (a) Moon, H.; Zeis, R.; Borkent, E.-J.; Besnard, C.; Lovinger, A. J.;
Siegrist, T.; Kloc, C.; Bao, Z. J. Am. Chem. Soc. 2004, 126, 15322-15323.
(b) Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue,
Y.; Sato, F.; Tokito, S. J. Am. Chem. Soc. 2004, 126, 8138-8140. (c) Chen,
Z.; Mu¨ller, P.; Swager, T. M. Org. Lett. 2006, 8, 273-276.
2386
Org. Lett., Vol. 8, No. 11, 2006