8288
A. Merschaert et al. / Tetrahedron Letters 47 (2006) 8285–8288
Table 3. Cyclization of 2-substituted-2-[(dialkylaminothio)]imino acetonitriles with nucleophiles
a)
b)
N
1
H2N
Nu1
Nu1
Nu2
Nu1
2
Nu2
HO- or RO-
N
N
N
N
N
S
S
S
R1, R2 = Si(Alk)3
N
7a-n
8a-d
R2
R1
4-6
Entry
Substrate
Nucleophile (Nu2)/solvent
HMDS + LiHMDS/THF
T (°C)
Product
Yield (%)
Exact mass calcd/found
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
4a
4a
4a
4a
4a
4a
4a
4a
4a
4a
4d
4f
65
7a
7b
7c
7d
7e
7f
70
73
40
88
94
84
68
86
89
30
85
86
90
80
50
40
77
94
95
62
95
319.102848/319.103500
260.044192/260.043909
256.052421/256.053273
300.096622/300.096620
260.065322/260.065019
303.107521/303.108504
329.123171/329.123757
289.091871/289.091397
nd
Phenylacetylene + LDA/THF
TMS-acetylene + LDA/THF
c-Hex–CO2Me + LDA/THF
Me2–CH–CO2Me + LDA/THF
Me2N–CH2–CHMe–CO2Me + LDA/THF
N-Me-ethylpipecolinate + LDA/THF
Me2N–CH2–CO2Et + NaDA/THF
Bn2N–CH2–CO2Et + NaDA/THF
Ph2C@N–CH2–CO2Et + LDA/THF
n-PrSH + n-PrSNa/THF
n-PrSH + n-PrSNa/THF
BnOH + t-BuOK/THF
BnOH + t-BuOK/THF
n-PrSH + n-PrSNa/THF
n-PrSH + n-PrSNa/THF
BnOH + t-BuOK/THF
NaOH/THF–H2O or K2CO3/EtOH
NaOH/THF–H2O or K2CO3/EtOH
NaOH/THF–H2O or K2CO3/EtOH
NaOH/THF–H2O or K2CO3/EtOH
À50 to 20
À25 to 0
À25
À25
À25
À25
7g
7h
7i
À25
À30 to À10
À30 to 0
7j
nd
20
7k
7l
342.086057/342.088500
265.070741/265.071800
297.093584/294.092400
266.054757/266.053900
nd
nd
nd
nd
20
20
20
20
60
20
20
20
4f
7m
7n
7n
7n
7n
8a
8b
8c
8d
5a
5d
6c
6a
4a
4c
4d
4f
207.046634/207.046800
283.077934/283.078900
206.059246/206.060100
20
20
All compounds were fully characterized by 1H and 13C NMR spectroscopy. Compounds 7i and 7j were not analyzed for exact mass (converted to the
corresponding amino-acids). Compounds from entries 15–18 were not analyzed for exact mass (entries 15–17 same as entry 14, entry 18 known
compd).
1967, 32, 2823–2829; (c) Begland, R. W.; Hartter, D. R. J.
Org. Chem. 1972, 37, 4136–4145; (d) Yoon, S. C.; Cho, J.;
Kim, K. J. Chem. Soc., Perkin Trans. 1 1998, 109–116.
4. (a) Weinstock, L. M.; Mulvey, D. M.; Tull, R. J. Org.
Chem. 1976, 41, 3121–3214; (b) Hanasaki, Y.; Watanabe,
H.; Tsuzuki, K. JP 03193771, 1991; Chem. Abstr. 1992,
116, 59363.
5. Unpublished results. The reactivity of alkyl- and aryl-
thiadiazoles with Grignard reagents has been reported.
See: De Munno, A.; Bertini, V.; Picci, N. Heterocycles
1986, 24, 1131–1136, and references cited therein.
6. Kouvetakis, J.; Grotjahn, D.; Becker, P.; Moore, S.;
Dupon, R. Chem. Mater. 1994, 6, 636–639.
7. Komin, A. P.; Carmack, M. J. Heterocycl. Chem. 1976,
13, 13–22.
8. Merschaert, A.; Gorissen, H. Heterocycles 2003, 60, 29–
45.
9. Full preparative and characterization details in Borghese,
A.; Mancuso, V.; Merschaert, A. PCT Int. Appl. WO
2006068821, 2006.
10. A kg batch of 2b was produced. Stable for several years at
À20 °C as indicated by NMR spectroscopy.
References and notes
1. (a) Weinstock, L. M.; Shinkai, I. 1,2,5-Thiadiazoles and
their Benzo Derivatives. In Comprehensive Heterocyclic
Chemistry; Katritzky, A. R., Rees, C. W., Potts, K. T.,
Eds.; Pergamon Press: Oxford, 1984; Vol. 6, pp 513–543;
(b) Weinstock, L. M.; Pollak, P. I. Adv. Heterocycl. Chem.
1968, 9, 107–163.
2. (a) Wasson, B. K.; Gibson, W. K.; Stuart, R. S.; Williams,
H. W. R.; Yates, C. H. J. Med. Chem. 1972, 15, 651–655;
(b) Hanasaki, Y.; Watanabe, H.; Katsuura, K.; Taka-
yama, H.; Shirakawa, S.; Yamaguchi, K.; Sakai, S.; Ijichi,
K.; Fujiwara, M.; Konno, K.; Yokota, T.; Shigeta, S.;
Baba, M. J. Med. Chem. 1995, 38, 2038–2040; (c) Ward, J.
S.; Merritt, L.; Calligaro, D. O.; Bymaster, F. P.;
Shannon, H. E.; Mitch, C. H.; Whitesitt, C.; Brunsting,
D.; Sheardown, M. J.; Olesen, P. H.; Swedberg, M. D. B.;
Jeppesen, L.; Sauerberg, P. J. Med. Chem. 1998, 41, 379–
392, and references cited therein.
3. (a) Weinstock, L. M.; Davis, P.; Handelsman, B.; Tull, R.
Tetrahedron Lett. 1966, 7, 1263–1268; (b) Weinstock, L.
M.; Davis, P.; Handelsman, B.; Tull, R. J. Org. Chem.