metal-organic compounds
Crystal data
factors of 0.7 and 0.3. Some non-H atoms show abnormally high
displacement parameters, but all these atoms were re®ned with
anisotropic displacement parameters, with a positive de®nite thermal
tensor. This gives high Ueq(max):Ueq(min) ratios for C and H atoms.
H atoms were added in their calculated positions and included in the
Ê
structure-factor calculations, with CÐH distances of 0.93±0.96 A and
Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl atoms.
3
[Mn2(C42H49N5O2)(C2H3O2)2]-
(C24H20B)
Mr = 1203.04
Monoclinic, P21=n
a = 16.492 (3) A
Dx = 1.244 Mg m
Mo Kꢄ radiation
Cell parameters from 25
re¯ections
ꢅ = 9.9±13.2ꢀ
ꢀ = 0.45 mm
T = 293 (2) K
Ê
Ê
1
b = 16.804 (3) A
Ê
c = 24.519 (5) A
ꢃ = 109.07 (3)ꢀ
Irregular block, dark red
0.47 Â 0.40 Â 0.13 mm
Data collection: CAD-4 EXPRESS (Enraf±Nonius, 1994); cell
re®nement: SET4 in CAD-4 EXPRESS; data reduction: HELENA
(Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et
al., 1999); program(s) used to re®ne structure: SHELXL97 (Shel-
drick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software
used to prepare material for publication: SHELXL97.
3
Ê
V = 6422 (2) A
Z = 4
Data collection
Enraf±Nonius CAD-4
diffractometer
!/2ꢅ scans
4980 re¯ections with I > 2ꢁ(I)
Rint = 0.052
ꢅmax = 25.0ꢀ
Absorption correction: scan
[(North et al., 1968) and
PLATON (Spek, 2003)]
Tmin = 0.829, Tmax = 0.937
11638 measured re¯ections
11223 independent re¯ections
h = 0 ! 19
This work was supported by FINEP and CNPq.
k = 19 ! 0
l = 29 ! 27
3 standard re¯ections
every 200 re¯ections
intensity decay: 1%
Supplementary data for this paper are available from the IUCr electronic
archives (Reference: TA1508). Services for accessing these data are
described at the back of the journal.
Re®nement
Re®nement on F2
R[F2 > 2ꢁ(F2)] = 0.052
wR(F2) = 0.127
S = 0.86
11223 re¯ections
784 parameters
H-atom parameters constrained
w = 1/[ꢁ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
(Á/ꢁ)max < 0.001
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C.,
Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J.
Appl. Cryst. 32, 115±119.
Antonyuk, S. V., Melik-Adamyan, W. R., Popov, A. N., Lamzin, V. S.,
Hempstead, P. D., Harrison, P. M., Artymiuk, P. J. & Barynin, V. V. (2000).
Crystallogr. Rep. 45, 111±122.
Barynin, V. V., Hempstead, P. D., Vagin, A. A., Antonyuk, S. V., Melik-
Adamyan, W. R., Lamzin, V. S., Harrison, P. M. & Artymiuk, P. J. (1997). J.
Inorg. Biochem. 67, 196.
Buchanan, R. M., Oberhausen, K. J. & Richardson, J. F. (1988). Inorg. Chem.
27, 971±973.
Diril, H., Chang, H.-R., Nilges, M. J., Zhang, X., Potenza, J. A., Schugar, H. J.,
Isied, S. S. & Hendrickson, D. N. (1989). J. Am. Chem. Soc. 111, 5102±5114.
Dubois, L., Xiang, D.-F., Tan, X.-S., Pecaut, J., Jones, P., Baudron, S., Le Pape,
L., Latour, J.-M., Baffert, C., Chardon-Noblat, S., Collomb, M.-N. &
Deronzier, A. (2003). Inorg. Chem. 42, 750±760.
3
Ê
Áꢆmax = 0.24 e A
3
Ê
0.31 e A
Áꢆmin
=
Table 1
Selected geometric parameters (A, ).
ꢀ
Ê
Mn1ÐO61
Mn1ÐO71
Mn1ÐO1
Mn1ÐN32
Mn1ÐN22
Mn1ÐN1
2.067 (3)
2.139 (3)
2.161 (2)
2.237 (3)
2.262 (4)
2.335 (3)
Mn2ÐO50
Mn2ÐO1
Mn2ÐO72
Mn2ÐN4
Mn2ÐO62
Mn2ÐN42
1.823 (2)
1.905 (2)
1.984 (3)
2.118 (3)
2.129 (3)
2.278 (3)
O61ÐMn1ÐO71
O61ÐMn1ÐO1
O71ÐMn1ÐO1
O61ÐMn1ÐN32
O71ÐMn1ÐN32
O1ÐMn1ÐN32
O61ÐMn1ÐN22
O71ÐMn1ÐN22
O1ÐMn1ÐN22
N32ÐMn1ÐN22
O61ÐMn1ÐN1
O71ÐMn1ÐN1
O1ÐMn1ÐN1
97.80 (13)
100.42 (11)
88.22 (10)
101.59 (13)
87.95 (11)
157.97 (11)
96.88 (14)
164.95 (13)
85.85 (10)
92.38 (12)
169.30 (13)
91.08 (11)
85.76 (10)
72.64 (12)
74.71 (13)
177.69 (12)
O50ÐMn2ÐO72
O1ÐMn2ÐO72
O50ÐMn2ÐN4
O1ÐMn2ÐN4
86.59 (11)
92.36 (10)
88.71 (11)
91.88 (11)
167.14 (12)
92.03 (12)
90.15 (11)
97.88 (12)
94.24 (11)
91.52 (12)
86.42 (11)
89.94 (12)
78.22 (12)
171.59 (12)
116.74 (11)
Enraf±Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf±Nonius,
Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Greatti, A., de Brito, M. A., Bortoluzzi, A. D. & Ceccato, A. S. (2004). J. Mol.
Struct. 688, 185±190.
O72ÐMn2ÐN4
O50ÐMn2ÐO62
O1ÐMn2ÐO62
O72ÐMn2ÐO62
N4ÐMn2ÐO62
O50ÐMn2ÐN42
O1ÐMn2ÐN42
O72ÐMn2ÐN42
N4ÐMn2ÐN42
O62ÐMn2ÐN42
Mn2ÐO1ÐMn1
Karsten, P., Neves A., Bortoluzzi, A. J., Lanznaster, M. & Drago, V. (2002).
Inorg. Chem. 41, 4624±4626.
È
È
Karsten P., Neves A., Bortoluzzi, A. J., Strahle, J. & Maichle-Mossmer, C.
(2002). Inorg. Chem. Commun. 5, 434±438.
Khangulov, S. V., Barynin, V. V., Voevodskaya, N. V. & Grebenko, A. I. (1990).
Biochim. Biophys. Acta Bioenergetics, 1020, 305±310.
Miyasaka, H., Izawa, T., Sugiura, K. I. & Yamashita, M. (2003). Inorg. Chem.
42, 7683±7690.
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351±
359.
N32ÐMn1ÐN1
N22ÐMn1ÐN1
O50ÐMn2ÐO1
È
Sheldrick, G. M. (1997). SHELXL97. University of Gottingen, Germany.
Sokolowski, A., Jochen, M., Weyhermuller, T., Schnepf, R., Hildebrandt, P.,
Hildebrandt, K., Bothe, E. & Wieghardt, K. (1997). J. Am. Chem. Soc. 119,
8889±8900.
Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7±13.
Waldo, G. S. & Penner-Hahn, J. E. (1995). Biochemistry, 34, 1507±1512.
Wu, A. J., Penner-Hahn, J. E. & Pecoraro, V. L. (2004). Chem. Rev. 104, 903±
938.
The crystals of (I) grew from the mother solution as large prisms,
but these diffracted poorly. Thus, the number of observed re¯ections
in the hkl ®le is small (44%), giving rise to the consistency values
Rint = 0.0518 and Rꢁ = 0.1572. One tert-butyl group is disordered and
its terminal C atoms have two alternative positions, with occupancy
ꢁ
Acta Cryst. (2006). C62, m27±m29
Bortoluzzi et al.
[Mn2(C42H49N5O2)(C2H3O2)2](C24H20B) m29