4096 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 14
Tafi et al.
(18) Li, A. H.; Moro, S.; Forsyth, N.; Melman, N.; Ji, X. D.; Jacobson,
K. A. Synthesis, CoMFA analysis, and receptor docking of 3,5-diacyl-
2,4-dialkylpyridine derivatives as selective A3 adenosine receptor
antagonists. J. Med. Chem. 1999, 42, 706-721.
(19) Xie, R.; Li, A. H.; Ji, X. D.; Melman, N.; Olah, M. E.; Stiles, G. L.;
Jacobson, K. A. Selective A3 adenosine receptor antagonists: water-
soluble 3,5-diacyl-1,2,4-trialkylpiridinium salts and their oxidative
generation from dihydropyridine precursors. J. Med. Chem. 1999,
42, 4232-4238.
(20) Van Rhee, A. M.; Jiang, J. L.; Melman, N.; Olah, M. E.; Stiles, G.
L.; Jacobson, K. A. Interaction of 1,4-dihydropyridine and pyridine
derivatives with adenosine receptors: selectivity for A3 receptors. J.
Med. Chem. 1996, 39, 2980-2989.
(21) Jiang, J. L.; Van Rhee, A. M.; Chang, L.; Patchornik, A.; Ji, X. D.;
Evans, P.; Melman, N.; Jacobson, K. A. Structure-activity relation-
ships of 4-(phenylethynyl)-6-phenyl-1,4-dihydropyridines as highly
selective A3 adenosine receptor antagonists. J. Med. Chem. 1997,
40, 2596-2608.
(22) Jalaie, M.; Erickson, J. A. Homology model directed alignment
selection for comparative molecular field analysis: Application to
photosystem II inhibitors. J. Comput.-Aided Mol. Des. 2000, 14, 181-
197.
(23) Bro¨er, B. M.; Gurrath, M.; Ho¨ltje, H. D. Molecular modelling studies
on the ORL1-receptor and ORL1-agonists. J. Comput.-Aided Mol.
Des. 2003, 17, 739-754.
(24) Poulsen, A.; Bjørnholm, B.; Gundertofte, K.; Pogozheva, I. D.;
Liljefors, T. Pharmacophore and receptor models for neurokinin
receptors. J. Comput.-Aided Mol. Des. 2003, 17, 765-783.
(25) Pogozheva, I. D.; Przydzial, M. J.; Mosberg, H. J. Homology
modeling of opioid receptor-ligand complexes using experimental
constraints. Am. Assoc. Pharm. Sci. J. 2005, 7, E434-E448 and
references therein.
(26) Evers, A.; Gohlke, H.; Klebe, G. Ligand supported homology
modelling of protein binding-sites using knowledge-based potentials.
J. Mol. Biol. 2003, 334, 327-345.
(27) Evers, A.; Klebe, G. Ligand-supported homology modelling of
G-protein coupled receptor sites: Models sufficient for successful
virtual screening. Angew. Chem., Int. Ed. 2004, 43, 248-251.
(28) Di Santo, R.; Tafi, A.; Costi, R.; Botta, M.; Artico, M.; Corelli, F.;
Forte, M.; Caporuscio, F.; Angiolella, L.; Palamara, A. T. Antifungal
agents. 11. N-Substituted Derivatives of 1-[(aryl)(4-aryl-1H-pyrrol-
3-yl)methyl]-1H-imidazole: Synthesis, anti-Candida activity, and
QSAR studies. J. Med. Chem. 2005, 48, 3019-3031.
(29) Ferrarini, P. L.; Betti, L.; Cavallini, T.; Giannaccini, G.; Lucacchini,
A.; Manera, C.; Martinelli, A.; Ortore, G.; Saccomanni, G.; Tucci-
nardi, T. Study on affinity profile toward native human and bovine
adenosine receptors of a series of 1,8-naphthyridine derivatives. J.
Med. Chem. 2004, 47, 3019-3031.
(30) Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima,
H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R.
E.; Yamamoto, M.; Miyano, M. Crystal structure of rhodopsin: A
G protein-coupled receptor. Science 2000, 289, 739-745.
(31) Moro, S.; Li, A. H.; Jacobson, K. A. Molecular modeling studies of
A3 adenosine antagonists: structural homology and receptor docking.
J. Chem. Inf. Comput. Sci. 1998, 38, 1239-1248.
Laboratories (2004 Academic Development Program Chemistry
Award). A.T., C.B., M.B., and F.C. thank the “Centro Univer-
sitario per l’Informatica e la Telematica” of the University of
Siena.
Supporting Information Available: Details of the alignment
procedure of the adenosine receptors and bovine rhodopsin amino
acid sequences and elemental analysis data of the newly synthesized
derivatives 13-18. This material is available free of charge via
References
(1) Zhou, Q. Y.; Olah, M. E.; Johnson, R. A.; Stiles, G. L.; Clivelli, O.
Molecular cloning and characterization of an adenosine receptor: the
A3 adenosine receptor. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 7432-
7436.
(2) Jacobson, K. A. Adenosine A3 receptors: novel ligands and paradoxi-
cal effects. Trends Pharmacol. Sci. 1998, 19, 184-191.
(3) Van Schaick, E. A.; Jacobson, K. A.; Kim, H. O.; IJzerman, A. P.;
Danhof, M. Hemodynamic effects and histamine release elicited by
the selective adenosine A3 receptor agonist Cl-IB-MECA in conscious
rats. Eur. J. Pharmacol. 1996, 308, 311-314.
(4) Hannon, J. P.; Pfannkuche, H. J.; Fozard, J. R. A role for mast cells
in adenosine A3 receptor-mediated hypotension in the rat. Br. J.
Pharmacol. 1995, 115, 945-952.
(5) Ramkumar, V.; Stiles, G. L.; Beaven, M. A.; Ali, H. The A3AR is
the unique adenosine receptor which facilitates release of allergic
mediators in mast-cells. J. Biol. Chem. 1993, 268, 16887-16890.
(6) Von Lubitz, D. K. J. E.; Carter, M. F.; Deutsch, S. I.; Lin, R. C. S.;
Mastropaolo, J.; Meshulam, Y.; Jacobson, K. A. The effects of
adenosine A3 receptor stimulation on seizures in mice. Eur. J.
Pharmacol. 1995, 275, 23-29.
(7) Von Lubitz, D. K. J. E.; Lin, R. C. S.; Popik, P.; Carter, M. F.;
Jacobson, K. A. Adenosine receptors: pharmacology, structure-
activity relationships, and therapeutic potential. J. Med. Chem. 1992,
35, 407-422.
(8) Beaven, M. A.; Ramkumar, V.; Ali, H. Adenosine A3 receptors in
mast cells. Trends. Pharmacol. Sci.1994, 15, 13-14.
(9) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, G.; Klotz, K.
N.; Leung, E.; Varani, K.; Gessi, S.; Merighi, S.; Borea, P. A.
Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as highly
potent and selective human A3 adenosine receptor antagonists. J. Med.
Chem. 1999, 42, 4473-4478.
(10) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, G.; Moro, S.;
Klotz, K. N.; Leung, E.; Varani, K.; Gessi, S.; Merighi, S.; Borea,
P. A. Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as
highly potent and selective human A3 adenosine recptor antago-
nists: influence of the chain at the N8 pyrazole nitrogen. J. Med.
Chem. 2000, 43, 4768-4780.
(11) Baraldi, P. G.; Cacciari, B.; Moro, S.; Spalluto, G.; Pastorin, G.; Da
Ros, T.; Klotz, K. N.; Varani, K.; Gessi, S.; Borea, P. A. Synthesis,
biological activity, and molecular modeling investigation of new
pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as human
A3 adenosine receptor antagonists. J. Med. Chem. 2002, 45, 770-
780.
(12) Maconi, A.; Pastorin, G.; Da Ros, T.; Spalluto, G.; Gao, Z.g.;
Jacobson, K. A.; Baraldi, P. G.; Cacciari, B.; Varani, K.; Moro, S.;
Borea, P. A. Synthesis, biological properties, and molecular modeling
investigation of the first potent, selective, and water-soluble human
A3 Adenosine receptor antagonist. J. Med. Chem. 2002, 45, 3579-
3582.
(13) Kim, Y. C.; Ji, X. D.; Jacobson, K. A. Derivatives of the triazolo-
quinazoline adenosine antagonist (CGS15943) are selective for the
human A3 receptor subtype. J. Med. Chem. 1996, 39, 4142-4148.
(14) Van Muijlwijk-Koezen, J. E.; Timmerman, H.; Link, R.; van der Goot,
H.; IJzerman, A. P. A novel class of adenosine A3 receptor ligands.
1. 3-(2-Pyridinyl)isoquinoline derivatives. J. Med. Chem. 1998, 41,
3987-3993.
(15) Van Muijlwijk-Koezen, J. E.; Timmerman, H.; Link, R.; van der Goot,
H.; IJzerman, A. P. A novel class of adenosine A3 receptor ligands.
2. Structure affinity profile of a series of isoquinoline and quinazoline
compounds. J. Med. Chem. 1998, 41, 3994-4000.
(16) Van Muijlwijk-Koezen, J. E.; Timmerman, H.; van der Goot, H.;
Menge, W. M. P. B.; von Drabbe Ku¨nzel, J. F.; de Groote, M.;
Ijzerman, A. P. Isoquinoline and quinazoline urea analogues as
antagonists for the human adenosine A3 receptor. J. Med Chem. 2000,
43, 2227-2238.
(17) Li, A. H.; Moro, S.; Melman, N.; Ji, X. D.; Jacobson, K. A.
Structure-activity relationships and molecular modeling of 3,5-
diacyl-2,4-dialkylpyridine derivatives as selective A3 adenosine
receptor antagonists. J. Med. Chem. 1998, 41, 3186-3201.
(32) Catalyst 4.6; Accelrys, Inc. (9685 Scranton Road, San Diego, CA
92121).
(34) GPCRDB: Information System for G Protein-coupled receptors
(35) Thompson, J. D.; Higgins, D. G.; Gibson, T. J. CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Res. 1994, 22, 4673-4680.
(36) Fredriksson, R.; Lagerstro¨m, M. C.; Lundin, L. G.; Schio¨th, H. B.
The G-protein-coupled receptors in the human genome form five main
families. Phylogenetic analysis, paralogon groups, and fingerprints.
Mol. Pharmacol. 2003, 63, 1256-1272.
(37) Gouldson, P. R.; Snell, C. R.; Reynolds, C. A. A new approach to
docking in the â2-adrenergic receptor that exploits the domain
structure of G-protein-coupled receptors. J. Med. Chem. 1997, 40,
3871-3886.
(38) Cruciani, G.; Goodford, P. GREATER Graphical Interface for GRID,
version, 1.1.7 GRIB, UPF/IMIM; Molecular Discovery Ltd.: Bar-
(39) Chen, A.; Gao, Z. G.; Barak, D.; Liang, B. T.; Jacobson, K. A.
Constitutive activation of A3 adenosine receptors by site-directed
mutagenesis. Biochem. Biophys. Res. Commun. 2001, 284, 596-601.
(40) Gao, Z. G.; Chen, A.; Barak, D.; Kim, S. K.; Muller, C. E.; Jacobson,
K. A. Identification by site-directed mutagenesis of residues involved
in ligand recognition and activation of the human A3 adenosine
receptor. J. Biol. Chem. 2002, 277, 19056-19063.