3788
V. Duprez, F. C. Krebs / Tetrahedron Letters 47 (2006) 3785–3789
orange crystals. After cooling to room temperature, the
Acknowledgements
crystals were filtered and washed with methanol (4 mL) to
give 6a as orange crystals (0.693 g, 38%). Mp: 176 ꢁC
(dec.). 1H NMR (CDCl3, 250.1 MHz): d 8.89 (d, 1H,
J = 4.7 Hz), 8.69 (s, 1H), 8.35 (d, 1H, J = 16 Hz), 8.07 (m,
3H), 7.96 (d, 1H, J = 16 Hz), 7.77 (m, 2H), 4.00 (s, 3H),
3.93 (s, 3H). 13C NMR (CDCl3, 62.9 MHz) d: 188.4, 166.4,
164.9, 154.9, 149.7, 143.6, 139.2, 138.8, 131.7, 130.0, 128.6,
126.0, 122.8, 122.2, 52.8, 52.2. Anal. Calcd for
C18H15NO5: C, 66.46; H, 4.65; N, 4.31; O, 24.59. Found:
C, 66.25; H, 4.75; N, 4.25.
This work was supported by the Danish Technical
Research Council (STVF 2058-03-0016) and the Danish
Strategic Research Council (DSF 2104-04-0030, DSF
2104-05-0052).
References and notes
1. (a) Cargill Thompson, A. M. W. Coord. Chem. Rev. 1997,
160, 1–52; (b) Hofmeier, H.; Schubert, U. S. Chem. Soc.
Rev. 2004, 33, 373–399.
2. (a) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakee-
ruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.;
Le Cevey, E. C.; Shklover, V.; Spiccia, L.; Deacon, G. B.;
Bignozzi, C. A.; Gra¨tzel, M. J. Am. Chem. Soc. 2001, 123,
18. Landesberg, J. M.; Slam, M. A.; Mandel, M. J. Org.
Chem. 1981, 46, 5025–5027.
19. Preparation of 8a as a representative procedure for the
synthesis of terpyridines 8a–g: 6a (0.185 g, 0.69 mmol) and
7b (0.327 g, 0.85 mmol) were added to a solution of excess
ammonium acetate (2 g, 26 mmol) in methanol (3 mL) and
the resulting solution was heated to reflux for 4 h. After
cooling to room temperature, a brown precipitate started
to form in the yellow solution. The precipitate was
collected by filtration, and triturated successively with
methanol (2 · 2 mL) and then with chloroform (2 · 2 mL).
The chloroform extract was freed of solvent, to give 8a as
a brown powder (0.152 g, 52%). Mp: 238 ꢁC (dec.). 1H
NMR (CDCl3, 250.1 MHz): d 11 (s, 1H), 8.83 (d, 1H,
J = 5 Hz), 8.74–8.65 (m, 4H), 8.15 (‘d’, apparent, 2H,
J = 8.25 Hz), 7.92 (‘d’, apparent, 2H, J = 8.25 Hz), 7.88 (t,
1H, J = 2.75, 4.5 Hz), 7.85 (d, 1H, J = 1.75 Hz), 7.38–7.33
(m, 1H), 4.02 (s, 3H), 3.95 (s, 3H). 13C NMR (CDCl3,
62.9 MHz): d 166.6, 165.8, 157.1, 156.3, 155.7, 155.3,
149.8, 149.1, 142.7, 138.4, 136.9, 130.6, 130.2, 127.3, 124.0,
122.8, 121.5, 120.6, 119.3, 119.1, 52.7, 52.2; MS (MALDI-
TOF): m/z 426.1448, calcd for C25H19N3O4 (MH+)
426.1429.
´
1613–1624; (b) Nazeeruddin, M. K.; Pechy, P.; Gra¨tzel,
M. Chem. Commun. 1997, 1705–1706; (c) Nazeeruddin,
M. K.; Pechy, P.; Gra¨tzel, M. Transition metal complex
photosensitizer and use of this complex in a photovoltaic
cell, PCT/IB 98/00680, CAN 130:14919.
3. (a) Zakeeruddin, S. M.; Nazeeruddin, M. K.; Pechy, P.;
Rotzinger, F. P.; Humphry-Baker, R.; Kalyanasundaram,
K.; Gra¨tzel, M.; Shklover, V.; Haibach, T. Inorg. Chem.
1997, 36, 5937–5946; (b) Krebs, F. C.; Biancardo, M. Sol.
Energy Mat. Sol. Cells 2006, 90, 142–165.
4. (a) Sarto Polo, A.; Kayoto Itokazu, M.; Murakami Iha,
N. Y. Coord. Chem. Rev. 2004, 248, 1343–1361; (b)
Gra¨tzel, M. J. Photochem. Photobiol. A: Chem. 2004, 164,
3–14.
5. Kro¨hnke, F. Synthesis 1976, 1–24.
6. Cave, G. W. V.; Raston, C. L. J. Chem. Soc., Perkin
Trans. 1 2001, 3258–3264.
7. (a) Labadie, J. W.; Stille, J. K. J. Am. Chem. Soc. 1983,
105, 6129–6137; (b) Heller, M.; Schubert, U. S. Synlett
2002, 751–754.
20. Figgemeier, E.; Aranyos, V.; Constable, E. C.; Handel,
R. W.; Housecroft, C. E.; Risinger, C.; Hagfeldt, A.;
Mukhtar, E. Inorg. Chem. Commun. 2004, 7, 117–121.
21. Siemeling, U.; Vor der Bruggen, J.; Vorfeld, U.; Stammler,
¨
8. Husson, J.; Beley, M.; Kirsch, G. Tetrahedron Lett. 2003,
44, 1767–1770.
9. Duprez, V.; Biancardo, M.; Spanggaard, H.; Krebs, F. C.
Macromolecules 2005, 38, 10436–10448.
10. Renouard, T.; Gra¨tzel, M. Tetrahedron 2001, 57, 8145–
8150.
11. (a) Hara, K.; Nishikawa, T.; Kurashige, M.; Kawauchi,
H.; Kashima, T.; Sayama, K.; Aika, K.; Arakawa, H. Sol.
A.; Stammler, H.-G. Z. Naturforsch. 2003, 58b, 443–446.
22. Preparation of 9d as a representative experimental proce-
dure for the access to carboxy-functionalized terpyridines
9a–g: compound 8d (1 g, 1.98 mmol) was dissolved in hot
methanol (12 mL) to which was added NaOH 1 N
(3.96 mmol, 2 equiv). The reaction mixture was refluxed
24 h, cooled to room temperature and acidified with HCl
0.5 N to pH 3.5–4. The precipitate was separated by
filtration, washed with water and air dried, to give 9d as a
brown powder (1.3 g, 83%). 1H NMR (DMSO-d6,
250.1 MHz): d 8.91–8.81 (m, 4H), 8.71–8.67 (m, 2H),
7.89–7.73 (m, 6H). 13C NMR (DMSO-d6, 62.9 MHz): d
166.5, 156.3, 155.7, 151.0, 149.1, 140.1, 136.8, 132.8, 129.5,
128.1, 123.9, 122.8, 120.1, 119.0; MS (MALDI-TOF): m/z
476.0240, calcd for C23H14BrN3O4 (MH+) 476.0227.
23. (a) Collin, J.-P.; Guillerez, S.; Sauvage, J.-P.; Barigelletti,
F.; De Cola, L.; Flamigni, L.; Balzani, V. Inorg. Chem.
1991, 30, 4230–4238; (b) Collin, J.-P.; Harriman, A.;
Heitz, V.; Odobel, F.; Sauvage, J.-P. J. Am. Chem. Soc.
1994, 116, 5679–5690.
Energy Mat. Sol. Cells 2005, 85, 21–30; (b) Nuesch, F.;
¨
Faes, A.; Zuppiroli, L.; Meng, F.; Chen, K.; Tian, H.
J. Mater. Sci. 2005, 40, 1353–1357.
12. Constable, E. C.; Heirtzeler, F.; Neuburger, M.; Zehnder,
M. J. Am. Chem. Soc. 1997, 119, 5606–5617.
13. (a) Thayer, H. I.; Corson, B. B. J. Am. Chem. Soc. 1948,
70, 2330–2333; (b) Henze, H. R.; Knowles, M. B. J. Org.
Chem. 1954, 19, 1127–1135; (c) Achremowicz, L. Synth.
Commun. 1996, 26, 1681–1684.
14. (a) Fatiadi, A. J. Synthesis 1987, 85–127; (b) Black, G.;
Depp, E.; Corson, B. B. J. Org. Chem. 1949, 14, 14–17; (c)
Danieli, R.; Ricci, A. Synthesis 1972, 46–47.
15. Tagawa, Y.; Yamashita, K.; Higuchi, Y.; Goto, Y.
Heterocycles 2003, 60, 953–957.
24. Sullivan, B. P.; Calvert, J. M.; Meyer, T. J. Inorg. Chem.
1980, 19, 1404–1407.
16. (a) Mikel, C.; Potvin, P. G. Polyhedron 2002, 21, 49–54;
(b) Zadykowicz, J.; Potvin, P. G. J. Org. Chem. 1998, 63,
235–240.
17. Preparation of 6a as a representative procedure for the
synthesis of enones 6a–d: piperidine (0.6 mL, 6.19 mmol)
and acetic acid (0.35 mL, 6.19 mmol) were added to a
stirred solution of 4a (0.92 g, 5.58 mmol) and 5b (1 g,
5.58 mmol) in methanol (10 mL). The mixture was
refluxed for 5 h and turned red with precipitation of
25. Preparation of 12 as a representative experimental proce-
dure for the synthesis of zwitterionic ruthenium com-
plexes. 10 (130 mg, 0.22 mmol) was dissolved in acetone
(80 mL) and 3.2 equiv of AgBF4 (137 mg, 0.69 mmol) were
added to the solution. The resulting solution was heated to
reflux for 2.5 h under argon and cooled down. The
precipitate of AgCl was removed by filtration using Celite.
The solvent was removed under vacuum to leave a dark
blue solid. The residue was dissolved in ethanol (50 mL)