(sCOsNHs) as a result of steric and electronic similarities.3
Fluoroolefins have been used in peptide chemistry as hydro-
lytically stable mimics of peptidic bonds.4 Depending on the
initial configuration of the double bond (E or Z), an access to
blocked cisoide or transoide peptidic bond conformation mimics
is made possible. Since the pioneering study in the peptide area
by Allmendinger et al.,4a some useful methods for the synthesis
of fluoroalkenes have been reported.5,6 Nevertheless, despite
these methods, several problems remain to be tackled, in
particular with respect to the control of the Z or E configuration
of the double bond, the stereochemistry of the chiral center R
to the double bond, and the versatility of the syntheses.
Our initial project aimed to propose a stereospecific and mild
method to obtain both isomers of dipeptide mimics 5. Our
strategy was based on the reaction of easily accessible bromo-
fluoroalkenes 27 to set up the carbon skeleton, followed by a
Nozaki-Hiyama-Kishi reaction (Scheme 1).8 Unfortunately,
under these conditions, we were unable to access to the E
isomer, probably because of the instability of the chromium
intermediate derived from (Z)-bromofluoroalkenes 2.
First Stereospecific Synthesis of (E)- or
(Z)-r-Fluoroenones via a Kinetically Controlled
Negishi Coupling Reaction
Guillaume Dutheuil, Clotilde Paturel, Xinsheng Lei,
Samuel Couve-Bonnaire, and Xavier Pannecoucke*
IRCOF-ECOFH, UMR CNRS 6014, INSA de ROUEN, rue
Tesnie`re, 76131 Mont-Saint-Aignan, France
ReceiVed March 6, 2006
To provide straightforward access to both isomers from the
same precursor 2, we decided to investigate the palladium-
catalyzed coupling reactions, which are known to react with
hindered Z vinylhalides.9 Another advantage of these methods
is the potential difference in reactivity between E and Z isomers,
which allows a selective coupling of the E isomer in the presence
of the Z isomer by kinetic control.10 To anticipate further
A highly stereospecific synthesis of (E)- or (Z)-R-fluoro-
R,â-unsaturated ketones 4, via a kinetically controlled
Negishi palladium-catalyzed coupling reaction, was devel-
oped, providing an easy and general access to valuable
fluorinated intermediates (pharmaceutical, peptide mimic, and
so on). The synthesis involved a reaction between E/Z gem-
bromofluoroolefins 2 and alkoxyvinylzinc species 6 under
controlled reaction temperature. At 10 °C, (Z)-4 (70 to 99%
yields) was obtained along with unreacted (Z)-2 (66 to 99%
yields). At THF reflux, the recovered olefin was transformed
into (E)-4 (up to 98% yield).
(3) (a) Welch, J. T.; Lin, J.; Boros, L. G.; De Corte, B.; Bergmann, K.;
Gimi, R. H. In Biomedical Frontiers of Fluorine Chemistry; The American
Chemical Society: Washington, DC, 1996; Chaper 10, pp 129-142. (b)
Cieplak, P.; Kollman, P. A.; Radomski, J. P. In Biomedical Frontiers of
Fluorine Chemistry; The American Chemical Society: Washington, DC,
1996; Chapter 11, pp 143-156 (c) Abraham, R. J.; Ellison, S. L. R.;
Schonholzer, P.; Thomas W. A. Tetrahedron 1986, 42, 2101-2110.
(4) (a) Allmendiger, T.; Furet, P.; Hungerbu¨hler, E. Tetrahedron Lett.
1990, 31, 7297-7300 and 7301-7304. (b) Boros, L. G.; De Corte, B.;
Gimi, R. H.; Welch, J. T.; Wu, Y.; Handschumacher, R. E. Tetrahedron
Lett. 1994, 35, 6033-6036. (c) Zhao, K.; Lim, D. S.; Funaki, T.; Welch, J.
T. Bioorg. Med. Chem. 2003, 11, 207-215. (d) Van der Veken, P.; Senten,
K.; Kerte`sz, I.; De Meester, I.; Lambeir, A.-M.; Maes, M.-B.; Scharpe´, S.;
Haemers, A.; Augustyns, K. J. Med. Chem. 2005, 48, 1768-1780.
(5) (a) Welch, J. T.; Lin, J. Tetrahedron 1996, 52, 291-304. (b) Van
der Veken, P.; Kerte`sz, I.; Senten, K.; Haemers, A.; Augustyns, K.
Tetrahedron Lett. 2003, 44, 6231-6234. (c) Veenstra, S. J.; Hauser, K.;
Felber, P. Bioorg. Med. Chem. Lett. 1997, 7, 351-354. (d) Hollenstein,
M.; Leumann, C. J. J. Org. Chem. 2005, 70, 3205-3217. (e) Bartlett, P.
A.; Otake, A. J. Org. Chem. 1995, 60, 3107-3111.
(6) (a) Nakamura, Y.; Okada, M.; Sato, A.; Horikawa, H.; Koura, M.;
Saito, A.; Taguchi, T. Tetrahedron 2005, 61, 5741-5753. (b) Otaka, A.;
Watanabe, H.; Mitsuyama, E.; Yukimasa, A.; Tamamura, H.; Fujii, N.
Tetrahedron Lett. 2002, 43, 5845-5847. (c) Otaka, A.; Watanabe, H.;
Yukimasa, A.; Sasaki, Y.; Watanabe, H.; Kinoshita, T.; Oishi, S.; Tamamura,
H.; Fujii, N. J. Org. Chem. 2004, 69, 1634-1645.
(7) (a) Lei, X.; Dutheuil, G.; Pannecoucke, X.; Quirion, J.-C. Org. Lett.
2004, 6, 2101-2104. (b) Burton, D. J.; Yang, Z.-Y.; Qiu, W. Chem. ReV.
1996, 96, 1641-1715.
(8) Dutheuil, G.; Lei, X.; Pannecoucke, X.; Quirion, J.-C. J. Org. Chem.
2005, 70, 1911-1914.
The development of efficient and mild methods for the
synthesis of organofluorine compounds represents a broad area
in organic chemistry, because the incorporation of a fluorine-
containing group into an organic molecule dramatically alters
its physical, chemical, and biological properties.1 Among them,
monofluorinated olefins have attracted a great deal of attention
because of their wide range of applications.1,2 Especially,
fluoroolefins (sCFdCHs) can act as ideal amide bond mimics
* Corresponding author. Fax: (33) 2.35.52.29.59. Tel.: (33) 2.35.52.24.27.
(1) (a) Kirsch, P., Ed. Modern Fluoroorganic Chemistry; Wiley-VCH:
Weinheim, Germany, 2004. (b) Chambers, R. D., Ed. Fluorine in Organic
Chemistry; Blackwell Publishing CRC Press: Boca Raton, FL, 2004. (c)
Banks, R. E., Smart, B. E., Tatlow, J. C., Eds. Organofluorine Chemistry:
Principle and Principal Applications; Plenum Press: New York, 1994.
(2) (a) Fieler, R.; Kobayashi, Y. Biomedical Aspects of Fluorine
Chemistry; Elsevier: Amsterdam, 1982. (b) Ojima, I. ChemBioChem 2004,
5, 628-635. (c) Jeschke, P. ChemBioChem 2004, 5, 570-579. (d) Resnati,
G., Soloshnok, V. A., Eds.; Fluoroorganic Chemistry: Synthetic Challenges
and Biomedical Rewards; Tetrahedron Symposia-in-print No. 58 Tetrahe-
dron 1996, 52, 1-330.
(9) (a) Andrei, D.; Wnuk, S. F. J. Org. Chem. 2006, 71, 405-408. (b)
Eddarir, S.; Francesh, C.; Mestdagh, H.; Rolando, C. Tetrahedron Lett. 1990,
31, 4449-4452. (c) Chen, C.; Wilcoxen, K.; Strack, N.; McCarthy, J. R.
Tetrahedron Lett. 1999, 40, 827-830. (d) Xu, J.; Burton, D. J. Tetrahedron
Lett. 2002, 43, 2877-2879.
(10) (a) Xu, J.; Burton, D. J. J. Org. Chem. 2005, 70, 4346-4353. (b)
Shimizu, M.; Nakamaki, C.; Shimono, K.; Schelper, M.; Kurahashi, T.;
Hiyama, T. J. Am. Chem. Soc. 2005, 127, 12506-12507. (c) Tan, Z.;
Negishi, E. Angew. Chem., Int. Ed. 2006, 45, 762-765. (d) Zeng, X.; Quian,
M.; Hu, Q.; Negishi, E. Angew. Chem., Int. Ed. 2004, 43, 2259-2263.
10.1021/jo0604787 CCC: $33.50 © 2006 American Chemical Society
Published on Web 05/04/2006
4316
J. Org. Chem. 2006, 71, 4316-4319