4
Tetrahedron Letters
powerful synthetic route for the development of chiral 3,4-
Lu, X.; Ge, L.; Cheng, C.; Chen, J.; Cao, W.; Wu, X., Chem. - Eur.
J. 2017, 23, 7689−7693; (d) Song, J.; Zhang, Z.-J.; Gong, L.-Z.,
Angew. Chem. Int. Ed. 2017, 56, 5212−5216; (e) Chen, H.; Lu, X.;
Xia, X.; Zhu, Q.; Song, Y.; Chen, J.; Cao, W.; Wu, X., Org. Lett.
2018, 20, 1760−1763; (f) Ji, D.; Wang, C.; Sun, J., Org. Lett. 2018,
20, 3710−3713; (g) Jiang, F.; Feng, X.; Wang, R.; Gao, X.; Jia, H.;
Xiao, Y.; Zhang, C.; Guo, H., Org. Lett. 2018, 20, 5278−5281.
Wang, Y.; Zhu, L.; Wang, M.; Xiong, J.; Chen, N.; Feng, X.; Xu,
Z.; Jiang, X., Org. Lett. 2018, 20, 6506−6510.
dihydroquinolin-2-one backbones.
Acknowledgments
We are grateful for financial support from the National
Natural Science Foundation of China (21572150), the Program
for New Century Excellent Talents in University (NCET-12-
0743) and a Project Funded by the Priority Academic Program
Development of Jiangsu Higher Education Institutions (PAPD).
9.
10. For selected reviews, see: (a) Peddibhotla, S.; Tepe, J. J., J. Am.
Chem. Soc. 2004, 126, 12776−12777; (b) Sharma, V.; Tepe, J. J.,
Org. Lett. 2005, 7, 5091−5094; (c) Uraguchi, D.; Ueki, Y.; Ooi, T.,
J. Am. Chem. Soc. 2008, 130, 14088−14089; (d) Cabrera, S.; Reyes,
E.; Alemán, J.; Milelli, A.; Kobbelgaard, S.; Jørgensen, K. A., J.
Am. Chem. Soc. 2008, 130, 12031−12037; (e) Alba, A.-N. R.;
Valero, G.; Calbet, T.; Font-Bardía, M.; Moyano, A.; Rios, R.,
Chem. - Eur. J. 2010, 16, 9884−9889; (f) Liu, X.; Deng, L.; Song,
H.; Jia, H.; Wang, R., Org. Lett. 2011, 13, 1494−1497; (g) Zhang,
W.-Q.; Cheng, L.-F.; Yu, J.; Gong, L.-Z., Angew. Chem. Int. Ed.
2012, 124, 4161−4164; (h) Marco-Martínez, J.; Reboredo, S.;
Izquierdo, M.; Marcos, V.; López, J. L.; Filippone, S.; Martín, N.,
J. Am. Chem. Soc. 2014, 136, 2897−2904; (i) Zhang, S.-Y.; Ruan,
G.-Y.; Geng, Z.-C.; Li, N.-K.; Lv, M.; Wang, Y.; Wang, X.-W.,
Org. Biomol. Chem. 2015, 13, 5698−5709.
11. For selected reviews, see: (a) Melhado, A. D.; Luparia, M.; Toste,
F. D., J. Am. Chem. Soc. 2007, 129, 12638−12639; (b) Shintani, R.;
Ikehata, K.; Hayashi, T., J. Org. Chem. 2011, 76, 4776−4780; (c)
Dong, S.; Liu, X.; Zhu, Y.; He, P.; Lin, L.; Feng, X., J. Am. Chem.
Soc. 2013, 135, 10026−10029; (d) Sun, W.; Zhu, G.; Wu, C.; Li,
G.; Hong, L.; Wang, R., Angew. Chem. Int. Ed. 2013, 52,
8633−8637; (e) Zhang, Q.; Guo, S.; Yang, J.; Yu, K.; Feng, X.; Lin,
L.; Liu, X., Org. Lett. 2017, 19, 5826−5829; (f) Ma, C.; Zhou, J.-
Y.; Zhang, Y.-Z.; Mei, G.-J.; Shi, F., Angew. Chem. Int. Ed. 2018,
57, 5398−5402; (g) Marra, I. F. S.; de Almeida, A. M.; Silva, L. P.;
de Castro, P. P.; Corrêa, C. C.; Amarante, G. W., J. Org. Chem.
2018, 83, 15144−15154; (h) Kamlar, M.; Franc, M.; Císařová, I.;
Gyepes, R.; Veselý, J., Chem. Commun. 2019, 55, 3829−3832.
12. Simlandy, A. K.; Ghosh, B.; Mukherjee, S., Org. Lett. 2019, 21,
3361−3366.
References and notes
1.
(a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V., Angew.
Chem. Int. Ed. 2005, 44, 5188−5240. (b) Kimata, A.; Nakagawa,
H.; Ohyama, R.; Fukuuchi, T.; Ohta, S.; Suzuki, T.; Miyata, N., J.
Med. Chem. 2007, 50, 5053−5056; (c) Crich, D.; Banerjee, A.,
Accounts. Chem. Res. 2007, 40, 151−161; (d) Vitaku, E.; Smith, D.
T.; Njardarson, J. T., J. Med. Chem. 2014, 57, 10257−10274.
(a) Young, S. D.; Britcher, S. F.; Tran, L. O.; Payne, L. S.; Lumma,
W. C.; Lyle, T. A.; Huff, J. R.; Anderson, P. S.; Olsen, D. B.;
Carroll, S. S., Antimicrob. Agents. Ch. 1995, 39, 2602−2605; (b)
Ito, C.; Itoigawa, M.; Otsuka, T.; Tokuda, H.; Nishino, H.;
Furukawa, H., J. Nat. Prod. 2000, 63, 1344−1348; (c) Patel, M.;
McHugh, R. J.; Cordova, B. C.; Klabe, R. M.; Bacheler, L. T.;
Erickson-Viitanen, S.; Rodgers, J. D., Bioorg. Med. Chem. Lett.
2001, 11, 1943−1945; (d) Beadle, C. D.; Boot, J.; Camp, N. P.;
Dezutter, N.; Findlay, J.; Hayhurst, L.; Masters, J. J.; Penariol, R.;
Walter, M. W., Bioorg. Med. Chem. Lett. 2005, 15, 4432−4437; (e)
Uchida, R.; Imasato, R.; Shiomi, K.; Tomoda, H.; Ōmura, S., Org.
Lett. 2005, 7, 5701−5704.
2.
3.
(a) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M., Chem. Rev.
2014, 114, 9047−9153; (b) Zhuo, C.-X.; Zheng, C.; You, S.-L.,
Accounts. Chem. Res. 2014, 47, 2558−2573; (c) Teng, H.-L.; Yao,
L.; Wang, C.-J., J. Am. Chem. Soc. 2014, 136, 4075-4080; (d) Li,
J.; Huang, R.; Xing, Y.-K.; Qiu, G.; Tao, H.-Y.; Wang, C.-J., J. Am.
Chem. Soc. 2015, 137, 10124−10127; (e) Zheng, C.; You, S.-L.,
Chem. 2016, 1, 830−857; (f) Huang, R.; Chang, X.; Li, J.; Wang,
C.-J., J. Am. Chem. Soc. 2016, 138, 3998-4001; (g) Bhat, V.;
Welin, E. R.; Guo, X.; Stoltz, B. M., Chem. Rev. 2017, 117,
4528−4561; (h) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.;
Cramer, N., Chem. Rev. 2017, 117, 8908−8976; (i)Wei, L.; Zhou,
Y.; Song, Z.-M.; Tao, H.-Y.; Lin, Z.; Wang, C.-J., Chem. - Eur. J.
2017, 23, 4995−4999; (j) Wei, L.; Li, Q.-H.; Wang, C.-J., J. Org.
Chem. 2018, 83, 11814-11824; (k) Chang, X.; Sun, X.-S.; Che, C.;
Hu, Y.-Z.; Tao, H.-Y.; Wang, C.-J., Org. Lett. 2019, 21,
1191−1196; (l) Vargová, D.; Némethová, I.; Plevová, K.; Šebesta,
R., ACS Catalysis. 2019, 9, 3104−3143.
Supplementary Material
Highlights
1. Developing a high efficient enantioselective
decarboxylative [4 + 2] cycloaddition
4.
5.
(a) Wang, C.; Tunge, J. A., J. Am. Chem. Soc. 2008, 130,
8118−8119; (b) Li, T.-R.; Tan, F.; Lu, L.-Q.; Wei, Y.; Wang, Y.-
N.; Liu, Y.-Y.; Yang, Q.-Q.; Chen, J.-R.; Shi, D.-Q.; Xiao, W.-J.,
Nat. Commun. 2014, 5, 5500−5510.
For selected reviews, see: (a) Wei, Y.; Lu, L.-Q.; Li, T.-R.; Feng,
B.; Wang, Q.; Xiao, W.-J.; Alper, H., Angew. Chem. Int. Ed. 2016,
55, 2200−2204; (b) Li, M.-M.; Wei, Y.; Liu, J.; Chen, H.-W.; Lu,
L.-Q.; Xiao, W.-J., J. Am. Chem. Soc. 2017, 139, 14707−14713; (c)
Wang, Y.-N.; Wang, B.-C.; Zhang, M.-M.; Gao, X.-W.; Li, T.-R.;
Lu, L.-Q.; Xiao, W.-J., Org. Lett. 2017, 19, 4094−4097; (d) Wang,
C.; Li, Y.; Wu, Y.; Wang, Q.; Shi, W.; Yuan, C.; Zhou, L.; Xiao,
Y.; Guo, H., Org. Lett. 2018, 20, 2880−2883; (e) Zhao, H.-W.;
Feng, N.-N.; Guo, J.-M.; Du, J.; Ding, W.-Q.; Wang, L.-R.; Song,
X.-Q., J. Org. Chem. 2018, 83, 9291−9299; (f) Sun, M.; Wan, X.;
Zhou, S.-J.; Mei, G.-J.; Shi, F., Chem. Commun. 2019, 55,
1283−1286.
2. Providing a series of enantio-enriched 3,4-
dihydroquinolin-2-one derivatives in high
yields
3. Dipolar copper−allenylidenes as the key
intermediates to react enolate azlactones
6.
7.
Wang, Q.; Li, T.-R.; Lu, L.-Q.; Li, M.-M.; Zhang, K.; Xiao, W.-J.,
J. Am. Chem. Soc. 2016, 138, 8360−8363.
For selected reviews, see: (a) Li, T.-R.; Cheng, B.-Y.; Wang, Y.-N.;
Zhang, M.-M.; Lu, L.-Q.; Xiao, W.-J., Angew. Chem. Int. Ed. 2016,
55, 12422−12426; (b) Lu, Q.; Cembellín, S.; Greßies, S.; Singha,
S.; Daniliuc, C. G.; Glorius, F., Angew. Chem. Int. Ed. 2018, 57,
1399−1403; (c) Wang, B.-C.; Wang, Y.-N.; Zhang, M.-M.; Xiao,
W.-J.; Lu, L.-Q., Chem. Commun. 2018, 54, 3154−3157; (d) Wang,
S.; Liu, M.; Chen, X.; Wang, H.; Zhai, H., Chem. Commun. 2018,
54, 8375−8378; (e) Zhang, Y.-C.; Zhang, Z.-J.; Fan, L.-F.; Song, J.,
Org. Lett. 2018, 20, 2792−2795.
Graphical Abstract
To create your abstract, type over the instructions in
the template box below.
Fonts or abstract dimensions should not be cha
8.
For selected reviews, see: (a) Li, T.-R.; Lu, L.-Q.; Wang, Y.-N.;
Wang, B.-C.; Xiao, W.-J., Org. Lett. 2017, 19, 4098−4101; (b)
Shao, W.; You, S.-L., Chem. - Eur. J. 2017, 23, 12489−12493; (c)