8 For reviews on the Prins cyclization, see: (a) L. E. Overman and
L. D. Pennington, J. Org. Chem., 2003, 68, 7143; (b) B. B. Snider, in The
Prins Reaction and Carbonyl Ene Reactions, ed. B. M. Trost, I. Fleming
and C. H. Heathcock, Pergamon Press, New York, 1991, vol. 2, p. 527;
(c) D. R. Adams and S. P. Bhatnagar, Synthesis, 1977, 661; (d)
E. Arundale and L. A. Mikeska, Chem. Rev., 1952, 52, 505.
9 For studies from the Willis group: (a) C. S. Barry, N. Bushby, J. P. H.
Charmant, J. D. Elsworth, J. R. Harding and C. L. Willis, Chem.
Commun., 2005, 5097; (b) C. S. Barry, N. Bushby, J. R. Harding,
R. A. Hughes, G. D. Parker, R. Roe and C. L. Willis, Chem. Commun.,
2005, 3727; (c) C. S. Barry, N. Bushby, J. R. Harding and C. L. Willis,
Org. Lett., 2005, 7, 2683; (d) C. S. J. Barry, S. R. Crosby, J. R. Harding,
R. A. Hughes, C. D. King, G. D. Parker and C. L. Willis, Org. Lett.,
2003, 5, 2429; (e) S. R. Crosby, J. R. Harding, C. D. King, G. D. Parker
and C. L. Willis, Org. Lett., 2002, 4, 3407; (f) S. R. Crosby, J. R. Harding,
C. D. King, G. D. Parker and C. L. Willis, Org. Lett., 2002, 4, 577; (g)
E. H. Al-Mutairi, S. R. Crosby, J. Darzi, J. R. Harding, R. A. Hughes,
C. D. King, T. J. Simpson, R. W. Smith and C. L. Willis, Chem.
Commun., 2001, 835.
10 (a) K. N. Cossey and R. L. Funk, J. Am. Chem. Soc., 2004, 126, 12216;
(b) K. V. Yadav and N. V. Kumar, J. Am. Chem. Soc., 2004, 126, 8652;
(c) P. O. Miranda, D. D. Diaz, J. I. Padron, J. Bermejo and V. S. Martin,
Org. Lett., 2003, 5, 1979; (d) D. J. Hart and C. E. Bennet, Org. Lett.,
2003, 5, 1499; (e) F. Lopez, L. Castedo and J. L. Mascarenas, J. Am.
Chem. Soc., 2002, 124, 4218; (f) Y. S. Cho, H. Y. Kim, J. H. Cha,
A. N. Pae, H. Y. Koh, J. H. Choi and M. H. Chang, Org. Lett., 2002, 4,
2025; (g) W. R. Roush and G. J. Dilley, Synlett, 2001, 955; (h) L. D. M.
Lolkema, C. Semeyn, L. Ashek, H. Hiemstra and W. N. Speckamp,
Tetrahedron, 1994, 50, 7129.
Apparently the remote alkene reacts with the oxocarbenium ion
intermediates (e.g. Fig. 2). Undaunted by this result, we employed
a five step procedure to convert THPs 9 to Smith and coworkers’
intermediate 15. Silylation of diol 14, available by reductive
cleavage of acetates 9, and subsequent hydrogenolysis of the
benzyl group provided a primary alcohol. After arene bromina-
tion,18 the alcohol was eliminated using Grieco and coworkers’
procedure19 to deliver alkene 15 in 35% yield from THPs 9. The
spectral data for 15 matched that reported by the Smith group,
and this correlation completes a formal synthesis of kendomycin.
In conclusion, we have successfully synthesized the C-aryl
glycoside found in kendomycin with a highly diastereoselective
Prins cyclization. Attenuation of the electron rich benzaldehyde
and the use of acetic acid as a trapping agent were necessary to
suppress problematic side reactions. The selective generation of
three new stereocenters in the Prins cyclization facilitated the short
and highly convergent assembly of the kendomycin fragment.
Support was provided by the National Cancer Institute (CA-
81635).
Dedicated to the life and memory of Norman Bahnck.
Notes and references
1 (a) Y. Funahishi, N. Kawamura and T. Ishimaru, Chem. Abs., 1996,
125, 326518; (b) Y. Funahishi, N. Kawamura and T. Ishimaru, Chem.
Abs., 1997, 126, 6553.
2 (a) H. B. Bode and A. Zeeck, J. Chem. Soc., Perkin Trans. 1, 2000, 323;
(b) H. B. Bode and A. Zeeck, J. Chem. Soc., Perkin Trans. 1, 2000, 2665
and references cited therein.
3 M. H. Su, M. I. Hosken, B. J. Hotovec and T. L. Johnston, US Patent
5728727 [A 980317], 1998; Chem. Abs., 1998, 128, 239489.
4 Y. Yuan, H. Men and C. Lee, J. Am. Chem. Soc., 2004, 126, 14720.
5 A. B. Smith, E. F. Mesaros and E. A. Meyer, J. Am. Chem. Soc., 2005,
127, 6948.
11 R. Breitenbach, C. K.-F. Chiu, S. S. Massett, M. Meltz,
C. W. Murtiashaw, S. L. Pezzullo and T. Staigers, Tetrahedron:
Asymmetry, 1996, 7, 435.
12 Prepared by modification (see supporting information{) of the reported
procedure: (a) R. W. Hoffmann, K. Ditrich, G. Koster and R. Sturmer,
Chem. Ber., 1989, 122, 1783. See also: (b) M. W. Rathke, E. Chao and
G. Wu, J. Organomet. Chem., 1976, 122, 145; (c) W. C. Hiscox and
D. S. Matteson, J. Org. Chem., 1996, 61, 8315.
13 The syn stereochemistry and the olefin geometry govern the configura-
tions of the tetrahydropyranyl substituents upon cyclization through a
chair-like transition state with an (E)-oxocarbenium ion.
6 (a) H. J. Martin, M. Drescher, H. Kahlig, S. Schneider and J. Mulzer,
Angew. Chem., Int. Ed., 2001, 40, 3186–3188; (b) M. M. B. Marques,
S. Pichlmair, H. J. Martin and J. Mulzer, Synthesis, 2002, 2766–2770; (c)
S. Pichlmair, M. M. B. Marques, M. P. Green, H. J. Martin and
J. Mulzer, Org. Lett., 2003, 5, 4657–4659; (d) M. P. Green, S. Pichlmair,
M. M. B. Marques, H. J. Martin, O. Diwald, T. Berger and J. Mulzer,
Org. Lett., 2004, 6, 3131–3134; (e) J. Mulzer, S. Pichlmair, M. P. Green,
M. M. Marques and H. J. Martin, Proc. Natl. Acad. Sci. USA, 2004,
101, 11980; (f) K. Shamim and D. R. Williams, Org. Lett., 2005, 7, 4161;
(g) J. T. Lowe and J. S. Panek, Org. Lett., 2005, 7, 1529; (h) J. D. White
and H. Smits, Org. Lett., 2005, 7, 235; (i) T. Sengoku, H. Arimoto and
D. Uemura, Chem. Commun., 2004, 1220.
7 (a) S. D. Rychnovsky, J. J. Jaber and M. Kazuhiko, J. Org. Chem.,
2001, 66, 4679; (b) S. Marumoto, J. J. Jaber, J. P. Vitale and
S. D. Rychnovsky, Org. Lett., 2002, 4, 3919; (c) R. Jasti, C. D. Anderson
and S. D. Rychnovsky, J. Am. Chem. Soc., 2005, 127, 9939; (d)
S. D. Rychnovsky, S. Marumoto and J. J. Jaber, Org. Lett., 2001, 3,
3815; (e) R. Jasti, J. Vitale and S. D. Rychnovsky, J. Am. Chem. Soc.,
2004, 126, 9904; (f) M. L. Bolla, B. Patterson and S. D. Rychnovsky,
J. Am. Chem. Soc., 2005, 127, 16044; (g) J. E. Dalgard and
S. D. Rychnovsky, Org. Lett., 2005, 7, 1589; (h) J. P. Vitale,
S. A. Wolckhenauer, N. M. Do and S. D. Rychnovsky, Org. Lett.,
2005, 7, 3255; (i) J. E. Dalgard and S. D. Rychnovsky, J. Am. Chem.
Soc., 2004, 126, 15662; (j) D. J. Kopecky and S. D. Rychnovsky, J. Am.
Chem. Soc., 2001, 123, 8420.
14 The absolute alcohol stereochemistry of 7 was confirmed as (R) by
Mosher’s ester analysis. See: (a) J. A. Dale and H. S. Mosher, J. Am.
Chem. Soc., 1973, 95, 512; (b) D. E. Ward and K. R. Chung,
Tetrahedron Lett., 1991, 32, 7165.
15 A. Kubo, Y. Kitahara, S. Nakahara and R. Numata, Chem. Pharm.
Bull., 1985, 33, 2122. Reported in the supplementary information are
detailed and optimized experimental procedures for the economic, half-
mole scale throughput of the precursors to Kubo’s hydroxybenzalde-
hyde from commercially available 2,6-dimethoxytoluene.
16 Replacement of the electron-withdrawing acetate or sulfonate
groups with methyl resulted mostly in fragmentation products,
with only 20% yield of the desired C-aryl glycoside. The problematic
role of electron-rich aromatic rings has been previously reported. See
ref. 9b.
17 This alcohol, (E,4R,5R,8S)-4,8-dimethyldeca-2,9-dien-5-ol, was prepared
by allylation of the known aldehyde, (4S)-methyl-hex-5-enal
(P. J. Kocienski and G. J. Cernigliaro, J. Org. Chem., 1977, 42, 3622),
with Hoffmann’s boronate 5 in 95% yield. See supporting information
for details{.
18 Propylene oxide was used as an acid scavenger in the bromination
reaction to avoid loss of the phenolic TBS group.
19 (a) P. A. Grieco and M. Nishizawa, J. Org. Chem., 1977, 42, 1717; (b)
P. A. Grieco, S. Gilman and M. Nishizawa, J. Org. Chem., 1976, 41,
1485.
2390 | Chem. Commun., 2006, 2388–2390
This journal is ß The Royal Society of Chemistry 2006