Canada, the Canada Foundation for Innovation, Queen’s Uni-
versity and the United States Department of the Army, Army
Research Office, Grant No. W911NF-04-1-0057 and the Defense
Threat Reduction Agency, Joint Science and Technology Office
(06012384BP).39 Roxanne Lewis thanks the Natural Sciences
and Engineering Council of Canada for an Undergraduate
Summer Research Award at Queen’s University.
10 For the designation of pH in non-aqueous solvents we use the forms
described by Bosch and co-workers11 based on the recommendations
of IUPAC, in the Compendium of Analytical Nomenclature, Definitive
Rules 1997 3rd ed., Blackwell, Oxford, UK 1998. If one calibrates the
measuring electrode with aqueous buffers and then measures the pH
of an aqueous buffer solution, the term wwpH is used; if the electrode
is calibrated in water and the ‘pH’ of the neat buffered methanol
solution then measured, the term swpH is used, and if the electrode is
calibrated in the same solvent and the ‘pH’ reading is made, then the
term sspH is used.
11 (a) E. Bosch, F. Rived, M. Roses and J. Sales, J. Chem. Soc., Perkin
Trans. 2, 1999, 1953; (b) F. Rived, M. Rose´s and E. Bosch, Anal.
Chim. Acta, 1998, 374, 309; (c) E. Bosch, P. Bou, H. Allemann and
M. Rose´s, Anal. Chem., 1996, 68, 3651; (d) I. Canals, J. A. Portal, E.
Bosch and M. Rose´s, Anal. Chem., 2000, 72, 1802.
12 It has been pointed out by a referee that, for methanolysis of the
G-agents, the fluoride product may bind to the metal ion and
be inhibitory and so the reactions could be stoichiometric. This
is a distinct possibility that further research will have to confirm
and, if present, circumvent. On the other hand, since our previous
work has shown that the La3+ catalysts promote phosphorothioate
methanolysis reactions for at least 100 turnovers,7c thiolate inhibition
of that system does not appear to present a problem.
References
1 (a) Y.-C. Yang, J. A. Baker and J. R. Ward, Chem. Rev., 1992, 92,
1729; (b) Y.-C. Yang, Acc. Chem. Res., 1999, 32, 109; (c) Y.-C. Yang,
Chem. Ind., 1995, 334.
2 Conference on Disarmament. The Convention of the Develop-
ment, Production, Stockpiling and Use of Chemical Weapons
and on Their Destruction. CD/1170. Geneva, August, 1992. (see
http://www.dfait-maeci.gc.ca/nndi-agency/cwc_1-en.asp).
3 H. Morales-Rojas and R. A. Moss, Chem. Rev., 2002, 102, 2497, and
references therein.
4 There is increasing concern that these relatively simple-to-make
materials could become preferred weapons of terrorist organizations.
Indeed, March 20, 2005 was the 10th anniversary of the sarin attack
in the Tokyo subway system by the Aum Shinrikyo cult, now known
as Aleph. That attack, one of the worst in Japan’s postwar history,
killed 12 people and left more than 5500 others ill and would have
been far more serious had Aum used pure materials.
13 P. Malatesta and G. Ceccarini, Boll. Chim. Farm., 1982, 121, 183.
14 (a) V. A. Palm, Tables of Rate and Equilibrium Constants of Hetero-
cyclic Reactions, vol. 1 (1), Proizbodstvenno–Izdatelckii Kombinat
Biniti, Moscow, 1975; (b) V. A. Palm, Tables of Rate and Equilibrium
Constants of Heterocyclic Reactions, suppl. vol. 1, issue 3, Tartu,
1985, Tartuskii Gosudarsvennii Universitet.
5 (a) L. Barr, C. J. Easton, K. Lee, S. F. Lincoln and J. S. Simpson,
Tetrahedron Lett., 2002, 7797; (b) T. Koike and E. Kimura, J. Am.
Chem. Soc., 1991, 113, 8935; (c) M. M. Ibrahim, K. Ichikawa and
M. Shiro, Inorg. Chim. Acta, 2003, 353, 187; (d) T. Itoh, H. Hisada,
Y. Usui and Y. Fujii, Inorg. Chim. Acta, 1998, 283, 51; (e) F. M.
Menger and T. Tsuno, J. Am. Chem. Soc., 1989, 111, 4903; (f) P.
Scrimin, P. Tecilla and U. Tonellato, J. Org. Chem., 1991, 56, 161 and
references therein; (g) F. Tafesse, Inorg. Chim. Acta, 1998, 269, 287;
(h) P. Scrimmin, G. Ghinlanda, P. Tecilla and R. A. Moss, Langmuir,
1996, 12, 6235; (i) C. A. Bunton, P. Scrimmin and P. Tecilla, J. Chem.
Soc., Perkin Trans. 2, 1996, 419; (j) Y. Fujii, T. Itoh and K. Onodera,
Chem. Lett., 1995, 305; (k) S. J. Oh, C. W. Yoon and J. W. Park,
J. Chem. Soc., Perkin Trans. 2, 1996, 329; (l) T. Berg, A. Simeonov
and K. Janda, J. Comb. Chem., 1999, 1, 96; (m) J. R. Morrow and
W. C. Trog l e r , Inorg. Chem., 1989, 28, 2330; (n) R. W. Hay and N.
Govan, J. Chem. Soc., Chem. Commun., 1990, 714; (o) D. Kong, A. E.
Martell and J. Reibenspies, Inorg. Chim. Acta, 2002, 333, 7; (p) R. W.
Hay and N. Govan, Polyhedron, 1998, 17, 463, 2079; (q) B. L. Tsao,
R. J. Pieters and J. Rebek, Jr., J. Am. Chem. Soc., 1995, 117, 2210;
15 The overall rate constant for the 31P NMR experiment is somewhat
slower than observed in the UV-vis kinetics and probably stems from
a non-optimal sspH setting in d1-methanol and a low initial concen-
tration of catalyst, neither of which favours complete conversion to
the (La3+(−OCH3)2) dimer.16b
.
16 (a) G. T. T. Gibson, A. A. Neverov and R. S. Brown, Can. J. Chem.,
2003, 81, 495; (b) We have determined in ref.7a and 17 that the maxi-
mal activity for the La3+ catalyzed methanolysis of both carboxylate
esters and phosphate triesters lies in the sspH region between 8.7–9.1,
where 95% of the activity is attributed to La3+2(−OCH3)2. Thus, the
conditional observed kL2 a rate constants reported in Table1 and 2 are
ca. 1/2 of the k2 of the La3+2(−OCH3)2 active form.
17 (a) A. A. Neverov, N. E. Sunderland and R. S. Brown, Org. Biomol.
Chem., 2005, 3, 65; (b) A. A. Neverov, T. McDonald, G. Gibson and
R. S. Brown, Can. J. Chem., 2001, 79, 1704; (c) A. A. Neverov, G.
Gibson and R. S. Brown, Inorg. Chem., 2003, 42, 228.
18 S.-B. Hong and F. M. Rauchel, Biochemistry, 1996, 35, 10904.
19 S. A. Ba-Saif and A. Williams, J. Org. Chem., 1988, 53, 2204.
20 N. Bourne, E. Chrystiuk, A. M. Davis and A. Williams, J. Am. Chem.
Soc., 1988, 110, 1890.
¯
(r) M. Yamami, H. Furutachi, T. Yokoyama and H. Okawa, Inorg.
Chem., 1998, 37, 6832; (s) C. M. Hartshorn, A. Singh and E. L.
Chang, J. Mater. Chem., 2002, 12, 602; (t) M. Rombach, C. Maurer,
K. Weis, E. Keller and H. Vahrenkamp, Chem. Eur. J., 1999, 5, 1013.
6 (a) R. W. Hay, N. Govan and K. E. Parchment, Inorg. Chem.
Commun., 1998, 1, 228; (b) P. R. Norman, A. Tate and P. Rich,
Inorg. Chim. Acta, 1988, 145, 211; (c) R. W. Hay, N. Govan and P. R.
Norman, Transition Met. Chem. (London), 1998, 23, 133; (d) R. J.
Whithey, Can. J. Chem., 1969, 476, 4383; (e) R. S. Brown and M.
Zamkanei, Inorg. Chim. Acta, 1985, 108, 201.
21 S. A. Khan and A. J. Kirby, J. Chem. Soc. B, 1970, 1172.
22 R. Rowell and D. G. Gorenstein, J. Am. Chem. Soc., 1981, 103,
5894.
23 S. A. Ba-Saif, M. A. Waring and A. Williams, J. Am. Chem. Soc.,
1990, 112, 8115.
24 E. Buncel, K. G. Albright and I. Onyido, Org. Biomol. Chem., 2004,
2, 601.
25 K. T. Douglas and A. Williams, J. Chem. Soc., Perkin Trans. 2, 1976,
7 (a) J. S. W. Tsang, A. A. Neverov and R. S. Brown, J. Am. Chem.
Soc., 2003, 125, 7602; (b) T. Liu, A. A. Neverov, J. S. W. Tsang and
R. S. Brown, Org. Biomol. Chem., 2005, 3, 1525; (c) J. S. W. Tsang,
A. A. Neverov and R. S. Brown, Org. Biomol. Chem., 2004, 2, 3457;
(d) W. Desloges, A. A. Neverov and R. S. Brown, Inorg. Chem., 2004,
43, 6752; (e) A. A. Neverov and R. S. Brown, Org. Biomol. Chem.,
2004, 2, 2245.
8 (a) We have presented a complete evaluation of the lanthanide
catalyzed ethanolysis of paroxon and while all Ln3+ give some
reaction, La3+ is certainly the best. R. S. Brown, A. A. Neverov, J. S. W.
Tsang, G. T. T. Gibson and P. J. Montoya-Pela´ez, Can. J. Chem.,
2004, 82, 1791; (b) A preliminary screening of the methanolysis of
paraoxon promoted by lanthanides and the transition metal ions
Zn2+, Co2+, Ni2+ and Cu2+ indicates that all the lanthanides are
active at a Ln3+/(−OCH3) ratio of unity, but La3+ is the best. For the
transition metals, Zn2+ 7b and Cu2+ are the best catalysts, but these tend
to dimerize to inactive forms. Addition of phenanthroline ligands
modifies the activities, but inactive dimer formation is still a problem
which can be completely alleviated by complexation to a tridentate
ligand such 1,5,9 triazacyclododecane or 1,4,7-triazacyclononane
ligand, with the former having the highest activity. N. E. Sunderland,
A. A. Neverov and R. S. Brown, unpublished results.
515.
26 A. Williams and R. A. Naylor, J. Chem. Soc. B, 1071, 1967.
27 (a) W. P. Jencks and M. Gilchrist, J. Am. Chem. Soc., 1968, 90, 2622;
(b) D. J. Hupe and W. P. Jencks, J. Am. Chem. Soc., 1977, 99, 451;
(c) J. M. Sayer and W. P. Jencks, J. Am. Chem. Soc., 1977, 99, 464;
(d) M. J. Gresser and W. P. Jencks, J. Am. Chem. Soc., 1977, 99, 6963.
28 (a) S. Thea and A. Williams, Chem. Soc. Rev., 1986, 15, 125; (b) A.
Williams, Acc. Chem. Res., 1984, 17, 425; (c) A. Williams, Concerted
Organic and Bio-organic Mechanisms, CRC Press, Boca Raton,
2000.
29 Given that the autoprotolysis constant of methanol is 10−16.77
2
s
s
(mol dm−3
)
(ref. 11) one can compute a pKa for methanol itself
of 18.13 on the mol dm−3 scale.
30 Buncel24 analyzes the Douglas and Williams25 data for the transfer
of (CH3)2P(O) group between oxyanion nucleophiles as giving a beq
of 0.88, suggesting that the OAr has a net starting charge of −0.12.
If one makes a correlation between the net OAr oxygen charge and
the RrI values of the EtO, Ph and CH3 groups on the P, i.e. charge
O = n(RrI), then n = 1.43 0.13, and the net positive charge for
the OAr group attached to a EtO(CH3)P(O) moiety is predicted to
be 0.5 0.05.
31 C. Maxwell, A. A. Neverov and R. S. Brown, submitted.
32 J. Suh, S. J. Son and M. P. Suh, Inorg. Chem., 1998, 37, 4872
have suggested that the hydrolysis of carboxylate esters promoted
9 Z.-L. Liu, A. A. Neverov and R. S. Brown, Org. Biomol. Chem., 2005,
3, 3379–3387.
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 4 0 8 2 – 4 0 8 8
4 0 8 7