internally into short RNA oligonucleotides via solid-phase
synthesis,6,7 and oligonucleotides can be assembled into larger
RNA molecules by ligation.8-10 Here we have used 2′-amino-
2′-deoxy-RNA (abbreviated 2′-NH2-RNA) as the amine reaction
partner. For generation of aldehydes on DNA, a few examples
have been demonstrated at specific locations such as the 5′- or
the 3′-termini,11-19 an internal 2′-position,20 a 1′-position of an
abasic site,21 and the nucleobases.22 The termini of a DNA strand
are appropriate modification sites because modifications at an
internal 2′-position or at a nucleobase may unintentionally
influence DNA duplex formation, which is the basis of the
constraint approach.1,2 Similarly, modifications are preferably
made without alteration to the deoxyribose ring. We therefore
focused on the termini to introduce DNA aldehydes.
Synthesis and Application of a 5′-Aldehyde
Phosphoramidite for Covalent Attachment of
DNA to Biomolecules
Chandrasekhar V. Miduturu and Scott K. Silverman*
Department of Chemistry, UniVersity of Illinois at Urbanas
Champaign, 600 South Mathews AVenue, Urbana, Illinois 61801
ReceiVed April 4, 2006
Automated solid-phase DNA synthesis utilizes a variety of
reaction conditions and reagents, some of which are incompat-
ible with an unprotected aldehyde.23 A 1,2-diol (glycol) is a
stable precursor of an aldehyde, because the 1,2-diol can be
cleaved oxidatively to the aldehyde using NaIO4 after oligo-
nucleotide synthesis. Utilizing this or other strategies, aldehydes
have been generated both at the 5′- and 3′-ends of DNA in
various ways (see structures A-G).12-18 To minimize the
exposure of the modified nucleoside to the solid-phase synthesis
conditions and for ease of synthesis of oligonucleotides in the
conventional 3′f5′ direction, installation of the aldehyde is
preferred at the 5′- rather than the 3′-end (i.e., not B or E). In
all of the published examples A-G, after reductive amination
the tether that connects the DNA to the amine-bearing biomol-
ecule was either relatively long and flexible (A-D) or short
and rigid (E-G). A long tether would probably be a poor choice
for connecting a structural constraint because flexibility could
We recently reported the use of covalently attached DNA
as a structural constraint for rational control of macromo-
lecular conformation. Reductive amination was employed to
attach each strand of the duplex DNA constraint to RNA,
utilizing an aldehyde tethered to the 5′-terminus of the DNA.
Here we describe the synthesis of a thymidine phosphora-
midite that has the 5′-tethered aldehyde masked as a 1,2-
diol. We also describe optimized reductive amination con-
ditions for linking 5′-aldehyde-DNA with 2′-amino-2′-deoxy-
RNA. These procedures should be generally applicable for
attaching DNA to biomolecules.
(6) Pieken, W. A.; Olsen, D. B.; Benseler, F.; Aurup, H.; Eckstein, F.
Science 1991, 253, 314-317.
(7) Jin, S.; Miduturu, C. V.; McKinney, D. C.; Silverman, S. K. J. Org.
Chem. 2005, 70, 4284-4299.
(8) Moore, M. J.; Sharp, P. A. Science 1992, 256, 992-997.
(9) Moore, M. J.; Query, C. C. Methods Enzymol. 2000, 317, 109-123.
(10) Purtha, W. E.; Coppins, R. L.; Smalley, M. K.; Silverman, S. K. J.
Am. Chem. Soc. 2005, 127, 13124-13125.
(11) Kremsky, J. N.; Wooters, J. L.; Dougherty, J. P.; Meyers, R. E.;
Collins, M.; Brown, E. L. Nucleic Acids Res. 1987, 15, 2891-2909.
(12) Agrawal, S.; Christodoulou, C.; Gait, M. J. Nucleic Acids Res. 1986,
14, 6227-6245.
(13) Skrzypczynski, Z.; Wayland, S. Bioconjugate Chem. 2003, 14, 642-
652.
(14) Jones, D. S.; Hachmann, J. P.; Osgood, S. A.; Hayag, M. S.; Barstad,
P. A.; Iverson, G. M.; Coutts, S. M. Bioconjugate Chem. 1994, 5, 390-
399.
(15) Podyminogin, M. A.; Lukhtanov, E. A.; Reed, M. W. Nucleic Acids
Res. 2001, 29, 5090-5098.
(16) Urata, H.; Akagi, M. Tetrahedron Lett. 1993, 34, 4015-4018.
(17) Oberhuber, M.; Joyce, G. F. Angew. Chem., Int. Ed. 2005, 44, 7580-
7583.
The DNA constraint strategy as applied to control RNA
folding requires covalent attachment of DNA oligonucleotides
to an RNA macromolecule.1,2 To enable site-specific attachment
of DNA, the coupling reaction must use functional groups that
are compatible with those found naturally in DNA and RNA.
Several linkage reactions have been explored for attaching DNA
oligonucleotides to small organic molecules and large biomol-
ecules, such as reductive amination and formation of oximes,
hydrazones, and disulfides.3-5 Among these approaches, reduc-
tive amination via the formation of an imine (Schiff base) and
its subsequent reduction with a borohydride reagent is particu-
larly desirable, because the linkage has no stereoisomers and is
chemically stable.
(18) Kodama, T.; Greenberg, M. M. J. Org. Chem. 2005, 70, 9916-
9924.
Reductive amination requires both amine and aldehyde
reaction partners. Primary amino groups can be incorporated
(19) Haralambidis, J.; Lagniton, L.; Tregear, G. W. Bioorg. Med. Chem.
Lett. 1994, 4, 1005-1010.
(1) Miduturu, C. V.; Silverman, S. K. J. Am. Chem. Soc. 2005, 127,
10144-10145.
(2) Miduturu, C. V.; Silverman, S. K. Angew. Chem., Int. Ed. 2006, 45,
1918-1921.
(3) Thuong, N. T.; Asseline, U. In Current Protocols in Nucleic Acid
Chemistry; Wiley: New York, 2000; Unit 4.2.
(4) Greenberg, M. M. In Current Protocols in Nucleic Acid Chemistry;
Wiley: New York, 2000; Unit 4.5.
(5) Zatsepin, T. S.; Stetsenko, D. A.; Gait, M. J.; Oretskaya, T. S.
Bioconjugate Chem. 2005, 16, 471-489.
(20) Kachalova, A. V.; Zatsepin, T. S.; Romanova, E. A.; Stetsenko, D.
A.; Gait, M. J.; Oretskaya, T. S. Nucleosides, Nucleotides Nucleic Acids
2000, 19, 1693-1707.
(21) Tilquin, J. M.; Dechamps, M.; Sonveaux, E. Bioconjugate Chem.
2001, 12, 451-457.
(22) Tre´visiol, E.; Renard, A.; Defrancq, E.; Lhomme, J. Tetrahedron
Lett. 1997, 38, 8687-8690.
(23) Caruthers, M. H.; Barone, A. D.; Beaucage, S. L.; Dodds, D. R.;
Fisher, E. F.; McBride, L. J.; Matteucci, M.; Stabinsky, Z.; Tang, J. Y.
Methods Enzymol. 1987, 154, 287-313.
10.1021/jo060723m CCC: $33.50 © 2006 American Chemical Society
Published on Web 06/17/2006
5774
J. Org. Chem. 2006, 71, 5774-5777