imines as electrophiles is limited mainly to the case of the
highly electronically activated R-tosyliminoesters.7 However,
as a result of their great synthetic availability, stability, and
structural variety, aryl, alkenyl, and alkyl N-sulfonyl imines
are very appealing N-protected electrophiles in Mannich-
type reactions.8 To the best of our knowledge, there are only
two precedents concerning the use of nonactivated N-sulfonyl
imines, in particular tosylimines, both involving the partici-
pation of a particular type of nucleophile partner: enolates
of glycine Schiff bases9 and N-(2-hydroxyacetyl)pyrrole.10
We recently described that the readily available and air-
stable copper(I) complexes of sulfenylphosphino-ferrocenes
(Fesulphos ligands),11 particularly the bulky bis(1-naphthyl)-
phosphine derivative [1a‚CuBr]2 (Scheme 1), in combination
Tosylimines are by far the type of N-sulfonyl imines most
used in organic synthesis. However, in recent years, we14
and others15 have shown that the substitution at sulfur,
especially when heteroaryl groups are used, can dramatically
affect the chemical behavior of N-sulfonyl imines, paving
the way for the development of novel reactive patterns of
great synthetic value. Thus, we first focussed on searching
for the optimal N-sulfonyl protecting group. In this pursuit,
several sulfonyl imines of benzaldehyde (2a-e) were readily
prepared16 and subjected to the reaction with 1-tert-butyldi-
methylsilyloxy-1-tert-butylthioethene (3) under our optimized
catalyst system,12 a combination of [1a‚CuBr]2 (5.1 mol %)
and AgClO4 (10 mol %) in CH2Cl217 at room temperature18
for 5 h. Table 1 highlights the important role of the nature
Table 1. Screening of Different N-Sulfonyl Groups
Scheme 1. Synthesis of the Copper(I) Complex [1a‚CuBr]2
conv
ee
entry
R
imine (%)a yield (%)b product (%)c
with AgClO4, behave as highly efficient chiral Lewis acid
catalysts for the formal aza Diels-Alder reaction of N-
sulfonyl imines with Danishefsky diene under very mild
reaction conditions.12 Extending the interest of this novel P,S-
copper complex in asymmetric catalysis,13 we report herein
its efficiency as general catalyst in the enantioselective
Mannich-type reaction of a broad structural variety of
N-sulfonyl imines and silyl enolates.
1
2
3
4
5
NMe2
p-NO2C6H4
p-Tol
2-pyridyl
2-thienyl
2a
2b
2c
2d
2e
0
20
50
90
95
4a
4b
4c
4d
4e
39
65
80
90
39
91
a Determined by 1H NMR analysis of the crude reaction mixture (the
remaining product is starting material). b Isolated yield after chromatographic
purification. c Determined by HPLC using chiral stationary phases.
of the sulfonyl group on the reactivity and enantioselectivity
of the process. While imines 2a and 2b led to the recovery
of the starting material or were hardly reactive (entries 1
and 2), the N-tosyl imine 2c reached 50% conversion under
identical conditions, affording the addition product 4c with
39% yield and 90% ee (entry 3). Heteroarylsulfonyl imines
2d14b and 2e showed enhanced reactivity, the reaction being
almost completed after 5 h (90-95% conversion, entries 4
and 5). However, whereas the N-(2-pyridyl)sulfonyl imine
2d gave 4d with low enantioselectivity (39% ee), the N-(2-
thienyl)sulfonyl derivative 2e produced 4e with 91% ee.
At this point, we confirmed the superiority of the complex
[1a‚CuBr]2 over the copper(I) bromide complexes of other
(4) (a) Kobayashi, S.; Matsubara, R.; Kitagawa, H. Org. Lett. 2002, 4,
143. (b) Kobayashi, S.; Matsubara, R.; Nakamura, Y.; Kitagawa, H.; Sugiura,
M. J. Am. Chem. Soc. 2003, 125, 2507. (c) Nakamura, Y.; Matsubara, R.;
Kiyohara, H.; Kobayashi, S. Org. Lett. 2003, 5, 2481. (d) Matsunaga, S.;
Yoshida, T.; Naoya, M.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc.
2004, 126, 8777. (e) Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, V. J.
Am. Chem. Soc. 2006, 128, 2778.
(5) (a) Kobayashi, S.; Hamada, T.; Manabe, K. J. Am. Chem. Soc. 2002,
124, 5640. (b) Hamada, T.; Manabe, K.; Kobayashi, S. Chem. Eur. J. 2006,
12, 1205.
(6) (a) Matsunaga, S.; Kumagai, N.; Harada, S.; Shibasaki, M. J. Am.
Chem. Soc. 2003, 125, 4712. (b) Yoshida, T.; Morimoto, H.; Kumagai, N.;
Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 3470. (c)
Sugita, M.; Yamaguchi, A.; Yamagiwa, N.; Handa, S.; Matsunaga, S.;
Shibasaki, M. Org. Lett. 2005, 7, 5339.
(7) For N-tosyl R-iminoesters, see: (a) Ferraris, D.; Young, B.; Dudding,
T.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 4548. (b) Ferraris, D.; Young,
B.; Cox, C.; Dudding, T.; Drury, W. J., III; Ryzhkov, L.; Taggi, A. E.;
Lectka, T. J. Am. Chem. Soc. 2002, 124, 67. (c) Marigo, M.; Kjærsgaard,
A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem. Eur. J. 2003, 9, 2359.
(8) The deprotection of commonly used phenyl- and tolyl-sulfonamides
are typically somewhat troublesome because of the required harsh reaction
conditions (see, for instance: Sharma, A. K.; Hergenrother, J. P. Org. Lett.
2003, 5, 2107).
(13) For the application of Fesulphos ligands in other metal-promoted
transformations, see: (a) Garc´ıa Manchen˜o, O.; Go´mez Arraya´s, R.;
Carretero, J. C. Organometallics 2005, 24, 557. (b) Cabrera, S.; Go´mez
Arraya´s, R.; Alonso, I.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 17938.
(c) Cabrera, S.; Go´mez Arraya´s, R.; Carretero, J. C. J. Am. Chem. Soc.
2005, 127, 16394. See also ref 11.
(14) (a) Esquivias, J.; Go´mez Arraya´s, R.; Carretero, J. C. J. Org. Chem.
2005, 70, 7451. (b) Esquivias, J.; Go´mez Arraya´s, R.; Carretero, J. C. Angew.
Chem., Int. Ed. 2006, 45, 629.
(9) Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org.
Chem. 2003, 68, 2583.
(10) Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem.,
Int. Ed. 2005, 44, 4365.
(11) Garc´ıa Manchen˜o, O.; Priego, J.; Cabrera, S.; Go´mez Arraya´s, R.;
Llamas, T.; Carretero, J. C. J. Org. Chem. 2003, 68, 3679.
(12) Garc´ıa Manchen˜o, O.; Go´mez Arraya´s, R.; Carretero, J. C. J. Am.
Chem. Soc. 2004, 126, 456. The reaction of Danishefsky diene with
N-tosylimines catalyzed by [1‚CuBr]2/AgClO4 occurs mainly by a stepwise
process: initial Mannich-type addition followed by in situ acid-catalyzed
cyclization to the formal aza Diels-Alder adduct.
(15) Sugimoto, H.; Nakamura, S.; Hattori, M.; Ozeki, S.; Shibata, N.;
Toru, T. Tetrahedron Lett. 2005, 46, 8941.
(16) See Supporting Information for details.
(17) DCE provided similar results, whereas toluene led to lower yields
and enantioselectivities. The use of coordinating solvents such as THF or
DMF resulted in no reaction.
(18) Lower temperature (0 °C) led to unpractical conversions.
2978
Org. Lett., Vol. 8, No. 14, 2006