catalysts. However, the number of phospholes bearing multiple
carbonyl functionalities at the R-positions is still limited.3
Burgada et al. and Tebby et al. independently reported the
synthesis of phosphole-2,3,4,5-tetraesters by sequential addi-
tion-elimination reactions of trialkyl phosphites or dialkyl
phosphonites with 2 equiv of dimethyl acetylenedicarboxylate.4,5
Mathey and co-workers prepared a phosphole-2,5-dicarboxylic
acid and its dimethyl ester via dilithiation of the corresponding
2,5-dibromophosphole.6 Another interesting approach reported
by Mathey’s group involves potassium phospholides as key
intermediates, from which several phosphole-2,5-dicarboxylic
acids and esters are prepared via sequential [1,5]-sigmatropy
of the functional groups.7 Although these methods have their
own synthetic merits, there is ample room for developing an
efficient synthetic approach to this class of compounds. Here
we report a new, convenient method for the synthesis of
1-phenylphosphole derivatives bearing one or two ester groups
at the R-positions via titanacycles. The crystal structure,
reactions, and optical properties of the newly prepared 2,5-
difunctionalized phospholes are also described.
A Convenient Method for the Synthesis of
2,5-Difunctionalized Phospholes Bearing Ester
Groups
Yoshihiro Matano,* Tooru Miyajima, Takashi Nakabuchi,
Yuichiro Matsutani, and Hiroshi Imahori
Department of Molecular Engineering, Graduate School of
Engineering, Kyoto UniVersity, Nishikyo-ku, Kyoto 615-8510,
Japan
ReceiVed March 15, 2006
To obtain the target phosphole derivatives, we set out to use
titanacyclopentadienes as key intermediates because this class
of compounds is known as versatile precursors for various
carbocyclic and heterocyclic compounds.8,9 Quite recently,
Tomita reported the synthesis of phosphole-containing polymers
via titanacyclopentadienes, generated from phenylene-bridged
diynes and Ti(II) reagents.10 To our knowledge, however, Ti-
Symmetrically and unsymmetrically 2,5-difunctionalized
phospholes bearing ester groups were prepared in a one-pot
procedure from the corresponding diynes and dichloro-
(phenyl)phosphine via titanacyclopentadienes. The observed
optical properties of the functionalized phospholes show that
the π-conjugative push-pull interaction between the 2- and
5-substituents plays an important role in controlling the light-
emitting efficiency.
(3) Phospholes bearing one carbonyl functional group at the 2- or
5-position have been reported. (a) Mathey, F. Tetrahedron Lett. 1973, 3255.
(b) Mathey, F. Tetrahedron 1974, 30, 3127. (c) Mathey, F. Tetrahedron
1976, 32, 2395. (d) Santini, C. C.; Mathey, F. J. Org. Chem. 1985, 50,
467. (e) Deschamps, E.; Mathey, F. Bull. Soc. Chim. Fr. 1992, 129, 486.
(f) Deschamps, E.; Mathey, F. Bull. Soc. Chim. Fr. 1996, 133, 541. (g)
Niemi, T.-A.; Coe, P. L.; Till, S. J. J. Chem. Soc., Perkin Trans. 1 2000,
1519. (h) Carmichael, D.; Klankermayer, J.; Richard, L.; Seeboth, N. Chem.
Commun. 2004, 1144.
(4) (a) Burgada, R.; Leroux, Y.; El Khoshnieh, Y. O. Tetrahedron Lett.
1981, 22, 3533. (b) Burgada, R.; El Khoshnieh, Y. O.; Leroux, Y.
Tetrahedron 1985, 41, 1223.
(5) (a) Tebby, J. C.; Willetts, S. E.; Griffiths, D. V. J. Chem. Soc., Chem.
Commun. 1981, 420. (b) Caesar, J. C.; Griffiths, D. V.; Tebby, J. C.; Willetts,
S. E. J. Chem. Soc., Perkin Trans. 1 1984, 1627. (c) Caesar, J. C.; Griffiths,
D. V.; Tebby, J. C. Phosphorus, Sulfur Silicon Relat. Elem. 1987, 29, 123.
(d) Caesar, J. C.; Griffiths, D. V.; Tebby, J. C. J. Chem. Soc., Perkin Trans.
1 1988, 175.
The chemistry of phospholes has been the subject of
numerous studies because of their utility as optical materials
and P ligands.1 It is well-known that the HOMO and LUMO
energies and their energy gap, namely, optical and electrochemi-
cal properties, of phospholes are strongly dependent on the
nature of the 2- and 5-substituents (R-substituents).2 The
coordinating ability of the phosphorus center of σ3-phospholes
is also influenced electronically and sterically by the R-substit-
uents. In these respects, functionalization of the phosphole ring
at the R-positions is a highly promising approach to design
unexploited classes of phosphole-containing materials and
(6) (a) Deschamps, EÄ .; Mathey, F. C.R. Acad. Sci. Paris Ser. IIc 1998,
715. (b) Deschamps, EÄ .; Richard, L.; Mathey, F. Angew. Chem., Int. Ed.
Engl. 1994, 33, 1158.
(7) (a) Holand, S.; Jeanjean, M.; Mathey, F. Angew. Chem., Int. Ed. Engl.
1997, 36, 98. (b) Holand, S.; Maigrot, N.; Charrier, C.; Mathey, F.
Organometallics 1998, 17, 2996. (c) Toullec, P.; Mathey, F. Synlett 2001,
1977. (d) Melaimi, M.; Ricard, L.; Mathey, F.; Le Floch, P. Org. Lett. 2002,
4, 1245.
(1) For reviews, see: (a) Quin, L. D. The Heterocyclic Chemistry of
Phosphorus; Wiley: New York, 1981. (b) Mathey, F. Chem. ReV. 1988,
88, 429. (c) Mathey, F. J. Organomet. Chem. 1990, 400, 149. (d) Quin, L.
D. In ComprehensiVe Heterocyclic Chemistry; Katritzky, A. R., Rees, C.
W., Scriven, E. F. V., Eds.; Elsevier: Oxford, 1996; Vol. 2. (e) Mathey,
F.; Mercier, F. C.R. Acad. Sci. Paris, Ser. IIb 1997, 701. (f) Hissler, M.;
Dyer, P. W.; Re´au, R. Coord. Chem. ReV. 2003, 244, 1. (g) Mathey, F.
Angew. Chem., Int. Ed. 2003, 42, 1578. (h) Mathey, F. Acc. Chem. Res.
2004, 37, 954. (i) Hissler, M.; Lescop, C.; Re´au, R. C.R. Chimie 2005, 8,
1186.
(2) (a) Hay, C.; LeVilain, D.; Deborde, V.; Toupet, L.; Re´au, R. Chem.
Commun. 1999, 345. (b) Hay, C.; Fischmeister, C.; Hissler, M.; Toupet,
L.; Re´au, R. Angew. Chem., Int. Ed. 2000, 10, 1812. (c) Hay, C.; Hissler,
M.; Fischmeister, C.; Rault-Berthelot, J.; Toupet, L.; Nyulaszi, L.; Re´au,
R. Chem.sEur. J. 2001, 7, 4222. (d) Delaere, D.; Nguyen, M. T.;
Vanquickenborne, L. G. Phys. Chem. Chem. Phys. 2002, 4, 1522. (e)
Delaere, D.; Nguyen, M. T.; Vanquickenborne, L. G. J. Phys. Chem. A
2003, 107, 838. (f) Su, H.-C.; Fadhel, O.; Yang, C.-J.; Cho, T.-Y.; Fave,
C.; Hissler, M.; Wu, C.-C.; Re´au, R. J. Am. Chem. Soc. 2006, 128, 983.
(8) For example, see: (a) Ohff, A.; Pulst, S.; Lefeber, C.; Peulecke, N.;
Arndt, P.; Burkalov, V. V.; Rosenthal, U. Synlett 1996, 111. (b) Whitby,
R. J. Transition Met. Org. Synth. 1997, 133. (c) Sato, F.; Urabe, H.;
Okamoto, S. Pure Appl. Chem. 1999, 71, 1511. (d) Siebeneicher, H.; Doye,
S. J. Prakt. Chem. 2000, 342, 102. (e) Sato, F.; Urabe, H.; Okamoto, S.
Chem. ReV. 2000, 100, 2835. (f) Mikami, K.; Matsumoto, Y.; Shiono, T.
Sci. Synth. 2003, 2, 457. (g) Rosenthal, U.; Arndt, P.; Baumann, W.;
Burlakov, V. V.; Spannenberg, A. J. Organomet. Chem. 2003, 670, 84.
(9) For the syntheses of 2,5-disubstituted phospholes via zirconacyclo-
pentadienes (Fagan-Nugent method), see: (a) Fagan, P. J.; Nugent, W. A.
J. Am. Chem. Soc. 1988, 110, 2310. (b) Douglas, T.; Theopold, K. H. Angew.
Chem., Int. Ed. Engl. 1989, 28, 1367. (c) Fagan, P. J.; Nugent, W. A.;
Calabrese, J. C. J. Am. Chem. Soc. 1994, 116, 1880. (d) Mao, S. S. H.;
Tilley, T. D. Macromolecules 1997, 30, 5566. (e) Morisaki, Y.; Aiki, Y.;
Chujo, Y. Macromolecules 2003, 36, 2594. See also ref 2.
10.1021/jo0605748 CCC: $33.50 © 2006 American Chemical Society
Published on Web 06/22/2006
5792
J. Org. Chem. 2006, 71, 5792-5795