13.2 Hz, 1 H), 2.18–2.22 (m, 2 H), 2.57 (dd, J = 8.5, 13.2 Hz, 1 H), 2.83–
2.92 (m, 2 H), 3.28 (ddm, J = 5.9, 8.5 Hz, 1 H), 3.30 (m, 1 H), 3.63 (t, J =
6.3 Hz, 2 H), 3.70 (s, 3 H), 3.71 (s, 3 H), 3.74 (s, 3 H), 5.31 (dm, J = 15.1 Hz,
1 H), 5.36 (dm, J = 15.1 Hz, 1 H), 6.55 (br d, J = 8.5 Hz, 2 H), 6.75 (d, J =
8.5 Hz, 2 H); 1H NMR (400 MHz, THF-d8) d 1.32–1.56 (m, 6 H), 1.57 (s,
3 H), 1.63 (s, 3 H), 2.00 (dd, J = 6.2, 13.1 Hz, 1 H), 2.13 (dt, J = 13.7,
6.8 Hz, 1 H), 2.18 (dt, J = 13.7, 7.6 Hz, 1 H), 2.53 (dd, J = 8.4, 13.1 Hz,
1 H), 2.83 (br d, J = 16.6 Hz, 1 H), 2.89 (br d, J = 16.6 Hz, 1 H), 3.22 (br
dd, J = 6.2, 7.6 Hz, 1 H), 3.28 (br d, J = 8.4 Hz, 1 H), 3.40–3.50 (m, 2 H),
3.61 (s, 3 H), 3.62 (s, 3 H), 3.63 (s, 3 H), 3.93 (br s, 1 H), 5.28 (dd, J = 7.6,
14.9 Hz, 1 H), 5.41 (dt, J = 14.9, 6.8 Hz, 1 H), 6.47 (d, J = 9.0 Hz, 2 H),
6.64 (d, J = 9.0 Hz, 2 H); 13C NMR (100 MHz, CDCl3) d 20.8, 21.6, 22.2,
32.7, 33.9, 36.7, 38.7, 41.2, 44.2, 52.6, 54.1, 55.8, 59.1, 62.7, 114.9, 125.2,
125.9, 132.9, 135.8, 152.0, 172.1, 172.2; HRMS: calc. for C27H39NO6:
473.2777. Found m/z (relative intensity) 474 (M+ + 1, 32), 473.2770 (M+,
100), 472 (7), 456 (2), 442 (13).
1 (a) D. J. Weix, Y. Shi and J. A. Ellman, J. Am. Chem. Soc., 2005, 127,
1092–1093; (b) K. Matsui, S. Takizawa and H. Sasai, J. Am. Chem. Soc.,
2005, 127, 3680–3681; (c) S.-W. Li and R. A. Batey, Chem. Commun.,
2004, 1382–1383; (d) X.-F. Zhu, J. Lan and O. Kwan, J. Am. Chem. Soc.,
2003, 125, 4716–4717; (e) N. Hermanns, S. Dahmen, C. Bohm and
S. Bra¨se, Angew. Chem., Int. Ed., 2002, 41, 3692–3694; (f) H. Fujihara,
K. Magai and K. Tomioka, J. Am. Chem. Soc., 2000, 122, 12055–12056.
2 (a) C. Ogawa, M. Sugiura and S. Kobayashi, Angew. Chem., Int. Ed.,
2004, 43, 6491–6493; (b) M. Marigo, A. Kjærsgaard, K. Juhl,
N. Gathergood and K. A. Jørgensen, Chem. Eur. J., 2003, 9,
2359–2367; (c) Y. Niwa and M. Shimizu, J. Am. Chem. Soc., 2003,
125, 3720–3721; (d) A. Co´rdova, W. Notz, G. Zhong, J. M. Betancort
and C. F. Barbas, III, J. Am. Chem. Soc., 2002, 124, 1842–1843.
3 H. Nakamura, H. Iwama and Y. Yamamoto, J. Am. Chem. Soc., 1996,
118, 6641–6647, and references therein.
4 (a) M. Shimizu, M. Kimura, T. Watanabe and Y. Tamaru, Org. Lett.,
2005, 7, 637–640; (b) M. Kimura, A. Miyachi, K. Kojima, S. Tanaka and
Y. Tamaru, J. Am. Chem. Soc., 2005, 127, 10117; (c) K. Kojima,
M. Kimura and Y. Tamaru, Chem. Commun., 2005, 4717–4719; (d)
M. Kimura, M. A. Miyachi, K. Kojima, S. Tanaka and Y. Tamaru,
J. Am. Chem. Soc., 2004, 126, 14360–14361; (e) N. Solin, J. Kjellgren and
K. J. Szabo´, J. Am. Chem. Soc., 2004, 126, 7026–7033; (f) S. Sakaguchi,
T. Mizuta, M. Furuwan, T. Kubo and Y. Ishii, Chem. Commun., 2004,
1638–1639; (g) J. L. Davis, R. Dhawan and B. A. Arndtsen, Angew.
Chem., Int. Ed., 2004, 43, 590–595; (h) S. J. Patel and T. F. Jamison,
Angew. Chem., Int. Ed., 2004, 43, 3941–3944; (i) S. Sebelius, O. A. Wallner
and K. J. Szabo´, Org. Lett., 2003, 5, 3065–3068; (j) R. A. Fernandes,
A. Stimac and Y. Yamamoto, J. Am. Chem. Soc., 2003, 125,
14133–14139; (k) S. J. Patel and T. F. Jamison, Angew. Chem., Int.
Ed., 2003, 42, 1364–1367; (l) S.-K. Kang, K.-J. Kim and Y.-T. Hong,
Angew. Chem., Int. Ed., 2002, 41, 1584–1586.
Scheme 2 Rationale for the selective formation of 1,5-anti-2.
attempts have been unsuccessful as yet to obtain crystalline solids
of 2n and 2o and their derivatives suitable for X-ray crystal-
lographic analysis [e.g., N-PMP and N-H pyrrolidine derivatives
and their HClO4 salts formed by cyclization via intramolecular
amination of 2n (TsCl/pyridine) and PMP deprotection (CAN/
CH3CN–H2O)].9
In summary, we demonstrated that Ni(acac)2 catalytically
promoted the five-component connection reactions of Me2Zn,
alkynes, diene (of 1,3-dien-8-ynes and 1,3-dien-9-ynes), aldehydes
and anisidine to furnish cyclic dienyl amines 2. Despite the low
reactivity, aldimines generated in situ showed comparable
reactivity to aldehydes under the nickel catalysis and even showed
better performance than aldehydes regarding the yields (2 vs. 29)
and stereoselectivity, providing 1,5-anti-2 as single diastereomers.
Furthermore, although lactols failed, the corresponding lactamines
successfully underwent the five-component connection reaction to
give cyclic dienyl amino alcohols 2n,o in acceptable yields.
This work was supported by the Ministry of Education, Culture
Sports, Science and Technology, Japanese Government [Grant-in-
Aid for Scientific Research B (16350058) and Priority Areas
(17035065)].
5 (a) M. Kimura, A. Ezoe, M. Mori and Y. Tamaru, J. Am. Chem. Soc.,
2005, 127, 201–209; (b) A. Ezoe, M. Kimura, T. Inoue, M. Mori and
Y. Tamaru, Angew. Chem., Int. Ed., 2002, 41, 2784–2786.
6 Similar acceleration effect of an excess amine and water has been reported
in ref. 4c,d.
Notes and references
{ Reactions are typically performed as follows (see eqn (2)): A mixture of
p-anisidine (246 mg, 2 mmol) and 2-hydroxy-1-oxacyclohexane (103 mg,
1 mmol) in dry THF (2 mL) was stirred at room temperature overnight
under N2. Into a flask containing Ni(acac)2 (12.8 mg, 0.05 mmol) purged
with N2 were added successively THF (1 mL), the above-prepared solution
(via cannula), 1a (125 mg, 0.5 mmol) and Me2Zn (3.6 mL, 1 M hexane).
The homogeneous solution was stirred at room temperature for 1 h;
Rf (1a) = 0.7, Rf (2o) = 0.07 (hexane–EtOAc = 2 : 1 v/v). The mixture was
partitioned into EtOAc (20 mL)/H2O (20 mL). The water phase was
saturated with NaCl and washed with EtOAc (2 6 10 mL). The combined
organic phase was dried (K2CO3) and concentrated in vacuo. The residue
was purified by column chromatography over silica gel (hexane–EtOAc
gradient; 2 : 1 to 1 : 1 v/v) to give 4,4-di(methoxycarbonyl)-2-[4-(p-anisidyl)-
8-hydroxy-(1E)-octenyl]-1-isopropylidenecyclopentane (2o, 171.3 mg) in
73% yield as a colorless oil. 2o: IR (neat) 3395 (m), 2932 (w), 1736 (s), 1512
(s), 1443 (s), 1242 (s), 1042 (s), 818 (s), 733 (w) cm21; 1H NMR (400 MHz,
CDCl3) d 1.41–1.60 (m, 6 H), 1.57 (s, 3 H), 1.65 (s, 3 H), 2.06 (dd, J = 5.9,
¯
7 Crystal data for 2g: C25H31NO2, M = 377.53, triclinic, space group P1,
˚
a = 8.8531(8), b = 10.122(2), c = 12.351(2) A, a = 85.224(5), b = 85.589(3),
3
˚
c = 76.189(3)u, U = 1069.2(3) A , T = 297.2 K, Z = 2, m(Mo-Ka) =
0.7107 mm21, 4501 reflections measured, 2394 unique (Rint = 0.021),
wR(F2) = 0.1450 (all data). This compound is a racemate with two
¯
inversion-related molecules in the P1 triclinic unit cell, and the X-ray
structure of 2g determines the relative stereochemistry. CCDC 209610.
For crystallographic data in CIF or other electronic format see DOI:
10.1039/b605728d.
8 The Z structures of 2c and 2d were deduced on the basis of NOE
experiments. For example, irradiation of the methyl group of
a-phenylethylidene of 2c caused increments of the area intensities of
C4–H (3.2%) and C29–H (1.5%), while no increment for C2–H was
observed.
9 S. Fustero, J. G. Soler, A. Bartolome´ and M. S. Rosello´, Org. Lett., 2003,
5, 2707–2710.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 2813–2815 | 2815