J. M. Andre´s et al. / Tetrahedron Letters 47 (2006) 5317–5320
5319
Table 2. Yields (%) for the transformations summarized in Scheme 4
References and notes
Substrate
i (%)
ii (%)
iii (%)
1. Reetz, M. T. Chem. Rev. 1999, 99, 1121.
anti-2a
anti-2b
anti-2c
anti-2d
56
57
60
58
70
79
68
72
90
76
74
81
´
´
2. (a) Alemani, C.; Bach, J.; Farras, J.; Garcıa, J. Org. Lett.
1999, 1, 1831; (b) Ohno, H.; Toda, A.; Takemoto, Y.; Fuji,
N.; Ibuka, T. J. Chem. Soc., Perkin Trans. 1 1999, 2949;
(c) Ohno, H.; Hamaguchi, H.; Tanaka, T. Org. Lett. 2001,
3, 2269.
3. Dondoni, A.; Perrone, D.; Turturici, E. J. Org. Chem.
1999, 64, 5557.
4. Gridley, J. J.; Coogan, M. P.; Knight, D. W.; Malik, K.
M. A.; Sharland, C. M.; Shingkhonrat, J.; Williams, S.
Chem. Commun. 2003, 2550.
5. Poisson, J.-F.; Normant, J. F. Org. Lett. 2001, 3, 1889.
6. (a) D’Aniello, F.; Schoenfelder, A.; Mann, A.; Taddei, M.
J. Org. Chem. 1996, 61, 9631; (b) Lee, B. W.; Lee, J. H.;
Jang, K. C.; Kang, J. E.; Kim, J. H.; Park, K.-H.; Park, K.
H. Tetrahedron Lett. 2003, 44, 5905; (c) Henegan, M.;
Procter, G. Synlett 1992, 489.
7. Clayden, J.; McCarthy, C.; Cumming, J. G. Tetrahedron:
Asymmetry 1998, 9, 1427.
´
´
8. Andres, J. M.; Barrio, R.; Martınez, M. A.; Pedrosa, R.;
´
Perez-Encabo, A. J. Org. Chem. 1996, 61, 4210.
9. Reetz, M. T.; Drewes, M. W.; Schmitz, A. Angew. Chem.,
Int. Ed. Engl. 1987, 26, 1141.
10. (a) Van der Zeijden, A. A. H. Tetrahedron: Asymmetry
1995, 6, 913; (b) Ishimaru, K.; Tsuru, K.; Yabuta, K.;
Wada, M.; Yamamoto, Y.; Akiba, K. Tetrahedron 1996,
52, 13137.
11. Ma, D.; Xie, W.; Zou, B.; Lei, Q.; Pei, D. Tetrahedron
Lett. 2004, 45, 8103.
Figure 1. ORTEP representation of X-ray structure for compound
10c.
12. Sa¨ıah, M. K. E.; Pellicciari, R. Tetrahedron Lett. 1995, 36,
4497.
ether, followed by deprotonation with n-BuLi and reac-
tion with benzyl chloroformate, yielded anti-8a–d in
good yields. Hydrogenation over Perlman’s catalyst of
anti-8a–d gave the TBDMS derivative of the corre-
sponding saturated d-amino c-hydroxy acid, which
was cyclized,13 without isolation, to 2-piperidinones
9a–d by treatment with dicyclohexylcarbodiimide and
4-pyrrolidinopyridine in methylene chloride at rt.
Deprotection of 9a–d with TBAF in THF yielded 10a–
d that was isolated by flash chromatography and crystal-
lization.14 The stereochemistry for compound 10c was
established by X-ray diffraction analysis15 (Fig. 1), and
extended for all the piperidinones.
13. Tanner, D.; Somfai, P. Tetrahedron 1988, 44, 619.
14. Selected data for compounds 10a–d. (5S,6R)-5-Hydroxy-
6-phenylpiperidin-2-one (10a). Colorless solid, mp 182–
23
183 °C (from EtOAc). ½aꢁD +31.6 (c 0.75, MeOH). IR
1
(KBr): 3293, 1633, 1359, 1085, 752, 703 cmꢀ1. H NMR
(CD3OD): 1.84 (m, 2H, CHHCHOH); 2.41 (m, 1H,
CHHCO); 2.57 (m, 1H, CHHCO); 3.90 (m, 1H, CHOH);
4.46 (d, 1H, J = 4.7 Hz, CHN); 4.91 (br s, 2H, OH and
NH); 7.25–7.45 (m, 5H, Har). 13C NMR (CD3OD): 25.9
(CH2CO); 28.4 (CH2CHOH); 64.6 (CHN); 70.5 (CHOH);
128.1, 129.0, 129.8 (CHar); 142.1 (Car); 174.9 (CO).
C11H13NO2 (191.2): calcd C 69.09, H 6.85, N 7.32; found
C 68.84, H 6.71, N 7.38. (5R,6S)-5-Hydroxy-6-methyl-
piperidin-2-one (10b). Colorless solid, mp 141–142 °C
23
(from EtOAc/hexane). ½aꢁD ꢀ20.0 (c 0.5, MeOH). IR
Compounds 10a–d and related piperidin-2-ones have
been used as starting materials in the asymmetric syn-
thesis of different alkaloids16 and our method comple-
ments other diastereoselective syntheses previously
described.17
(KBr): 3360, 3172, 1647, 1346, 1073, 944, 827 cmꢀ1 1H
.
NMR (CD3OD): 1.22 (d, 3H, J = 6.5 Hz, CH3); 1.80 (m,
1H, CHHCHOH); 2.00 (m, 1H, CHHCHOH); 2.30 (m,
1H, CHHCO); 2.45 (m, 1H, CHHCO); 3.31 (dq, 1H,
J = 6.5 Hz, J = 5.9 Hz, CHN); 3.56 (ddd, 1H, J =
8.8 Hz, J = 5.9 Hz, J = 3.2 Hz, CHOH); 4.89 (br s, 2H,
OH and NH). 13C NMR (CD3OD): 20.4 (CH3); 27.7
(CH2CO); 29.0 (CH2CHOH); 55.7 (CHN); 70.1 (CHOH);
174.2 (CO). C6H11NO2 (129.2): calcd C 55.80, H 8.58, N
In summary, the described methodology allows for the
preparation of diastereoisomeric enantioenriched amino
propargyl alcohols and their transformation into useful
chiral building blocks for the synthesis of complex
molecules. Different enantiopure 6-substituted 5-hydr-
oxy-piperidin-2-ones can be easily prepared from
commercially available a-amino acids.
10.84; found
C 55.66, H 8.48, N 10.90. (5R,6S)-
5-Hydroxy-6-isopropylpiperidin-2-one (10c). Colorless
23
solid, mp 84–85 °C (from EtOAc/hexane). ½aꢁD ꢀ7.7 (c
0.4, CHCl3). IR (KBr): 3370, 1634, 1260, 1084, 830,
705 cmꢀ1 1H NMR (CDCl3): 0.92 (d, 3H, J = 6.7 Hz,
.
CH3); 0.96 (d, 3H, J = 7.0 Hz, CH3); 1.90 (m, 3H,
CHHCHOH and CH(CH3)2); 2.29 (ddd, 1H,
J = 18.0 Hz, J = 8.1 Hz, J = 6.5 Hz, CHHCO); 2.48 (dt,
1H, J = 18.0 Hz, J = 6.4 Hz, CHHCO); 3.07 (m, 1H,
CHN); 3.59 (br s, 1H, OH); 3.85 (m, 1H, CHOH); 6.24
(br s, 1H, NH). 13C NMR (CDCl3): 16.7 (CH3); 19.6
(CH3); 27.3 (CH2CO); 27.8 (CH2CHOH); 29.8
Acknowledgments
´
The authors thank the Spanish Ministerio de Educacion
y Ciencia (DGI, Project CTQ2005-01191/BQU) for
financial support.