Journal of the American Chemical Society
Page 4 of 5
(8) Arkin, M. R.; Tang, Y.; Wells, J. A., Small-molecule inhibitors
of protein-protein interactions: progressing toward the reality. Chem.
Biol. 2014, 21, 1102-14.
1
2
3
4
5
6
7
8
In summary, we offer a strategy to modulate protein-protein
interactions particularly those governed by lysine methylation.
Development of orthogonal pairs for protein-protein
interactions is rarely attempted.28-30 Using a set of H3K9me3
writers and readers as paradigm, we showed that the remodeled
interface is orthogonal to the wild type. We established
biochemical integrity of the engineered interface, provided
structural rationale for orthogonality, demonstrated generality
of the approach, and validated functional compatibility of the
synthetic interface in recognizing transcriptional regulators. We
anticipate developing an in-cellulo assay to synthesize benzyl-
SAM by promiscuous SAM synthetase mutant using benzyl
methionine precursor.31 The engineered benzyllysine apparatus
would allow installing the unique modification on
chromosomal histone to interrogate a specific methyllysine
pathway within cell for orthogonal manipulation of mammalian
gene expression.
(9) James, L. I.; Frye, S. V., Chemical probes for methyl lysine
reader domains. Curr. Opin. Chem. Biol. 2016, 33, 135-41.
(10) Milosevich, N.; Hof, F., Chemical Inhibitors of Epigenetic
Methyllysine Reader Proteins. Biochem. 2016, 55, 1570-83.
(11) Islam, K., The Bump-and-Hole Tactic: Expanding the Scope of
Chemical Genetics. Cell Chem. Biol. 2018, 25, 1171-1184.
(12) Belshaw, P. J.; Schoepfer, J. G.; Liu, K.-Q.; Morrison, K. L.;
Schreiber, S. L., Rational Design of Orthogonal Receptor–Ligand
Combinations. Angew. Chem. Int. Ed. 1995, 34, 2129-2132.
(13) Bishop, A. C.; Ubersax, J. A.; Petsch, D. T.; Matheos, D. P.;
Gray, N. S.; Blethrow, J.; Shimizu, E.; Tsien, J. Z.; Schultz, P. G.; Rose,
M. D.; Wood, J. L.; Morgan, D. O.; Shokat, K. M., A chemical switch
for inhibitor-sensitive alleles of any protein kinase. Nature 2000, 407,
395-401. 14.
(14) Baud, M. G.; Lin-Shiao, E.; Cardote, T.; Tallant, C.; Pschibul,
A.; Chan, K. H.; Zengerle, M.; Garcia, J. R.; Kwan, T. T.; Ferguson, F.
M.; Ciulli, A., Chemical biology. A bump-and-hole approach to
engineer controlled selectivity of BET bromodomain chemical probes.
Science 2014, 346, 638-41.
(15) Qiao, Y.; Molina, H.; Pandey, A.; Zhang, J.; Cole, P. A.,
Chemical rescue of a mutant enzyme in living cells. Science 2006, 311,
1293-7.
(16) Breski, M.; Dey, D.; Obringer, S.; Sudhamalla, B.; Islam, K.,
Engineering Biological C–H Functionalization Leads to Allele-
Specific Regulation of Histone Demethylases. J. Am. Chem. Soc. 2016,
138, 13505-13508.
(17) Islam, K.; Zheng, W.; Yu, H.; Deng, H.; Luo, M., Expanding
cofactor repertoire of protein lysine methyltransferase for substrate
labeling. ACS Chem. Biol. 2011, 6 679-84.
(18) Allis, C. D.; Muir, T. W., Spreading chromatin into chemical
biology. ChemBioChem. 2011, 12, 264-79.
(19) Dalhoff, C.; Lukinavicius, G.; Klimasauskas, S.; Weinhold, E.,
Direct transfer of extended groups from synthetic cofactors by DNA
methyltransferases. Nat. Chem. Biol. 2006, 2, 31-2.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information. Methods for protein expression
and crystallization, biochemical assays, supplementary
figures and tables. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interest
(20) Lachner, M.; O'Carroll, D.; Rea, S.; Mechtler, K.; Jenuwein, T.,
Methylation of histone H3 lysine 9 creates a binding site for HP1
proteins. Nature 2001, 410, 116-20.
ACKNOWLEDGMENT
We thank the University of Pittsburgh, the National Institutes
of Health (R01GM123234) and the National Science
Foundation (MCB-1817692) for financial support; Dr. D.
Chakraborty and members of our laboratory for critical reading
and editing of the manuscript. Support for MALDI-TOF MS
instrumentation was provided by a grant from the National
Science Foundation (CHE-1625002).
(21) Kaustov, L.; Ouyang, H.; Amaya, M.; Lemak, A.; Nady, N.;
Duan, S.; Wasney, G. A.; Li, Z.; Vedadi, M.; Schapira, M.; Min, J.;
Arrowsmith, C. H., Recognition and specificity determinants of the
human cbx chromodomains. B. Biol. Chem. 2011, 286, 521-9.
(22) Nielsen, P. R.; Nietlispach, D.; Mott, H. R.; Callaghan, J.;
Bannister, A.; Kouzarides, T.; Murzin, A. G.; Murzina, N. V.; Laue, E.
D., Structure of the HP1 chromodomain bound to histone H3
methylated at lysine 9. Nature 2002, 416, 103-7.
(23) Liu, L.; Zhen, X. T.; Denton, E.; Marsden, B. D.; Schapira, M.,
ChromoHub: a data hub for navigators of chromatin-mediated
signalling. Bioinformatic. 2012, 28, 2205-6.
(24) Rea, S.; Eisenhaber, F.; O'Carroll, D.; Strahl, B. D.; Sun, Z. W.;
Schmid, M.; Opravil, S.; Mechtler, K.; Ponting, C. P.; Allis, C. D.;
Jenuwein, T., Regulation of chromatin structure by site-specific histone
H3 methyltransferases. Nature 2000, 406, 593-9.
(25) Canzio, D.; Larson, A.; Narlikar, G. J., Mechanisms of
functional promiscuity by HP1 proteins. Trends Cell Biol. 2014, 24,
377-86.
(26) Lechner, M. S.; Schultz, D. C.; Negorev, D.; Maul, G. G.;
Rauscher, F. J., 3rd, The mammalian heterochromatin protein 1 binds
diverse nuclear proteins through a common motif that targets the
chromoshadow domain. Biochem. Biophys. Res. Commun. 2005, 331,
929-37.
(27) Miyagi, S.; Koide, S.; Saraya, A.; Wendt, G. R.; Oshima, M.;
Konuma, T.; Yamazaki, S.; Mochizuki-Kashio, M.; Nakajima-Takagi,
Y.; Wang, C.; Chiba, T.; Kitabayashi, I.; Nakauchi, H.; Iwama, A., The
TIF1beta-HP1 system maintains transcriptional integrity of
hematopoietic stem cells. Stem Cell Rep. 2014, 2, 145-52.
(28) Koh, M.; Nasertorabi, F.; Han, G. W.; Stevens, R. C.; Schultz,
P. G., Generation of an Orthogonal Protein-Protein Interface with a
Noncanonical Amino Acid. J. Am. Chem. Soc. 2017, 139, 5728-5731.
REFERENCES
(1) Kouzarides, T., Chromatin modifications and their function. Cell
2007, 128, 693-705.
(2) Luo, M., Chemical and Biochemical Perspectives of Protein
Lysine Methylation. Chem. Rev. 2018, 118, 6656-6705.
(3) Lin, H., S-Adenosylmethionine-dependent alkylation reactions:
when are radical reactions used? Bioorg. Chem. 2011, 39, 161-70.
(4) Taverna, S. D.; Li, H.; Ruthenburg, A. J.; Allis, C. D.; Patel, D.
J., How chromatin-binding modules interpret histone modifications:
lessons from professional pocket pickers. Na. Struct. Mol. Biol. 2007,
14, 1025-40.
(5) Patel, D. J., A Structural Perspective on Readout of Epigenetic
Histone and DNA Methylation Marks. Cold Spring Harbor Perspec.
Biol. 2016, 8, a018754.
(6) Beaver, J. E.; Waters, M. L., Molecular Recognition of Lys and
Arg Methylation. ACS Chem. Biol. 2016, 11, 643-53.
(7) Murn, J.; Shi, Y., The winding path of protein methylation
research: milestones and new frontiers. Nat. Rev. Mol. Cell Biol. 2017,
18, 517-527.
ACS Paragon Plus Environment