7064
S. Sharma, B. Kundu / Tetrahedron Letters 49 (2008) 7062–7065
CHO
Finally, for the synthesis of crytotackinene 5, 9 was subjected to
O2N
+
(i)
N-methylation using CH3I in toluene to give the desired N-methyl-
N
N
H
NO2
ated product9f 5 in excellent yield.
H
R
N
H
In conclusion, we have described the first example of
SnCl2ꢀ2H2O-mediated intramolecular cyclization of 2-substituted
nitroarenes via C–N bond formation under mild conditions. The
generality of the method has been established by synthesizing
two sets of polycyclic structures based on indole and pyrrole, and
the alkaloid cryptotackieine. Thus, our new approach provides a
powerful entry into polycyclic structures related to an alkaloid.
R
6a-e
NH
(ii)
H
N
N
R
7a-e
Acknowledgements
Entry
R
Product
Isolated
Yield
(%)
87
92
81
Mass
HPLC
tR=min
(M++H)
The authors are thankful to Dr. A.K. Mandwal and SAIF, for the
spectral data. SS is thankful to CSIR, New Delhi India for a senior
research fellowship.
1
2
3
4
5
H
5-Cl
5-F
7a
7b
7c
7d
7e
234.4
268.3
252.4
264.2
294.2
15.327
18.249
16.495
18.440
15.978
3-OMe
4,5-Di-OMe
53
51
References and notes
1. (a) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R. M.;
Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti,
V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield,
J. J. Med. Chem. 1988, 31, 2235–2246; (b) Horton, D. A.; Bourne, G. T.; Smythe,
M. L. Chem. Rev. 2003, 103, 893–930; (c) Costantino, L.; Barlocco, D. Curr. Med.
Chem. 2006, 13, 763–771.
Scheme 2. Reagents and conditions: (i) Cat. TFA, N2, rt, 30 min; (ii) SnCl2ꢀ2H2O,
MeOH, reflux.
2. David, F.; Abderaouf, A.; Gerardo, D.; Pablo, C.; Marta, M.; Olga, P.; Carmen, C.;
Fernando, A.; John, A. J.; Mercedes, Á. Monatsh. Chem. 2004, 135, 615–627.
3. (a) Bräse, S.; Gil, C.; Knepper, K. Bioorg. Med. Chem. 2002, 10, 2415–2437; (b)
Balaban, A. T.; Oniciu, D. C.; Katritzky, A. R. Chem. Rev. 2004, 104, 2777–2812;
(c) Chen, J.-J.; Fang, H.-Y.; Duh, C.-Y.; Chen, I.-S. Planta Med. 2005, 71, 470–475;
(d) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Sugita, K. J. Am. Chem. Soc. 2002,
124, 2212–2220.
4. (a) Nyangulu, J. M.; Hargreaves, S. L.; Sharples, S. L.; Mackay, S. P.; Waigh, R. D.;
Duval, O.; Mberu, E. K.; Watkins, W. M. Bioorg. Med. Chem. Lett. 2005, 15, 2007–
2010; (b) Joshi, A. A.; Viswanathan, C. L. Bioorg. Med. Chem. Lett. 2006, 16, 2613–
2617; (c) Joshi, A. A.; Narkhede, S. S.; Viswanathan, C. L. Bioorg. Med. Chem. Lett.
2005, 15, 73–76.
Br
(i)
O2N
NH
NO2
+
N
H
8
(ii)
5. (a) Kundu, B.; Sawant, D.; Chhabra, R. J. Comb. Chem. 2005, 7, 317–321; (b)
Kundu, B.; Sawant, D.; Partani, P.; Kesarwani, A. P. J. Org. Chem. 2005, 70, 4889–
4892; (c) Duggineni, S.; Sawant, D.; Saha, B.; Kundu, B. Tetrahedron 2006, 62,
3228–3241; (d) Sharma, S.; Saha, B.; Sawant, D.; Kundu, B. J. Comb. Chem. 2007,
9, 783–792; (e) Saha, B.; Sharma, S.; Sawant, D.; Kundu, B. Tetrahedron 2008, 64,
8676–8684.
N
N
+
+
N
H
N
NH2
N
H
9
11
10
6. For a recent review, see: Yang, C.-G.; Huang, H.; Jiang, B. Curr. Org. Chem. 2004,
8, 1691–1720.
(iii)
7. Cimanga, K.; De Bruyne, T.; Pieters, L.; Vlietinck, A. J.; Turger, C. A. J. Nat. Prod.
1997, 60, 688–691.
5
8. (a) Molina, P.; Alajarin, M.; Vidal, A. J. Chem. Soc., Chem. Commun. 1990, 1277–
1279; (b) Molina, P.; Alajarin, M.; Vidal, A.; Sanchez-Andrada, P. J. Org. Chem.
1992, 57, 929–939; (c) Shi, C.; Zhang, Q.; Wang, K. K. J. Org. Chem. 1999, 64,
925–932; (d) Saito, T.; Ohmori, H.; Furuno, E.; Motoki, S. J. Chem. Soc., Chem.
Commun. 1992, 22–24; (e) Saito, T.; Ohmori, H.; Ohkubo, T.; Motoki, S. J. Chem.
Soc., Chem. Commun. 1993, 1802–1803.
9. (a) Peczynska-Czoch, W.; Pognan, F.; Kaczmarek, L.; Boratynski, J. J. Med. Chem.
1994, 37, 3503–3510; (b) Molina, P.; Fresneda, P. M.; Delgado, S. Synthesis 1999,
326–329; (c) Fresneda, P. M.; Molina, P.; Delgado, S. Tetrahedron Lett. 1999, 40,
7275–7278; (d) Alajarin, M.; Molina, P.; Vidal, A. J. Nat. Prod. 1997, 60, 747–
748; (e) Timári, G.; Soós, T.; Hajós, G. Synlett 1997, 1067–1068; (f) Sundaram, G.
S. M.; Venkatesh, C.; Syam Kumar, U. K.; Ila, H.; Junjappa, H. J. Org. Chem. 2004,
69, 5760–5762; (g) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. Tetrahedron
Lett. 2007, 48, 7870–7872; (h) Dhanabal, T.; Sangeetha, R.; Mohan, P. S.
Tetrahedron 2006, 62, 6258–6263.
Product
HPLC
(%)
Isolated
Yield
(%)
35
27
10
Mass
HPLC
tR=min
(M++H)
9
10
11
45
35
15
219.5
223.0
219.5
14.035
13.194
19.434
Scheme 3. Reagents and conditions: (i) Na2CO3, 80% acetone in H2O, 70 °C, 36 h,
83%. (ii) SnCl2ꢀ2H2O, MeOH, reflux. 1 h. (iii) MeI, toluene, 130 °C, sealed tube, 4 h,
82%.
10. Bandgar, B. P.; Shaikh, K. A. Tetrahedron. Lett. 2003, 44, 1959–1961.
11. General procedure: A solution of 3 or 6 (1 mmol) and SnCl2ꢀ2H2O (5 mmol) in
methanol (4 mL) was refluxed for 1 h. The solution was allowed to cool and
was then poured into ice. The pH was made slightly basic (pH 8) by addition of
5% aqueous NaHCO3. EtOAc (50 mL) was added to the mixture which was
filtered through a bed of CeliteÒ. The organic layer was washed with water
(50 mL), brine (50 mL), dried over anhydrous Na2SO4 and evaporated to
dryness under reduced pressure. The residue was purified by silica gel column
chromatography using hexane/ethyl acetate to afford products 4 and 7.
11-(1H-Indol-3-yl)-6H-indolo[2,3-b]quinoline: Compound (4a) Yield: 89%;
yellow solid; mp > 250 °C; Rf 0.60 (7:3 hexane/EtOAc); IR (KBr) mmax 3399,
any substitution at the methylene leads to incomplete intramole-
cular cyclization and competes with the formation of 10 and 11.
The use of other reductive procedures15 involving Zn, NH4Cl,
H2O, EtOH and Zn, NaOH, H2O, EtOH, reflux failed to offer any
improvement in terms of yield/selectivity. This is in contrast to
our findings on substrates 3a–e and 6a–e with substituents at their
respective methines resulting in products 4a–e and 7a–e. The
surprising result of incomplete reductive cyclization in 8 is indica-
tive of the crucial role of the substituents at the methines in 3 and
6, respectively. Substituents at the methines could be playing a
role by restricting rotation of the C–C bond in a manner that brings
the nitro group in close proximity to C-2 of the indole thereby
facilitating complete cyclization via the formation of a C–N bond.
1607 cmꢁ1 1H NMR (300 MHz, DMSO-d6) d 11.80 (br s, 1H, NH), 10.86 (br s,
;
1H, NH), 8.39 (d, 1H, J = 7.7 Hz, ArH), 8.27 (d, 1H, J = 8.2 Hz, ArH), 7.96 (d, 1H,
J = 8.0 Hz, ArH), 7.87 (d, 1H, J = 2.5 Hz, ArH), 7.69–7.44 (m, 5H, ArH), 7.31–7.21
(m, 2H, ArH), 7.14 (d, 1H, J = 7.8 Hz, ArH), 7.03 (t, 1H, J = 7.4 Hz, ArH); 13C NMR
(50 MHz, DMSO-d6) d 145.6, 144.5, 144.4, 136.9, 132.0, 129.7, 129.6, 127.2,
127.0, 126.1, 125.9, 124.8, 122.1, 121.8, 121.6, 120.5, 120.0, 119.8, 119.6, 112.4,
112.2, 107.7; Mass (ES+) m/z 334.6 (M++1); HRMS (EI) m/z calcd for [M+]