C O M M U N I C A T I O N S
Table 2. Allylation of Cyclic Imines Using (S)-2h
converted to R,â-unsaturated ester 7. n-BuLi induced intramolecular
Michael addition led to the formation of all-cis trisubstituted
δ-lactam 8.16 ent-Corynantheidol (9) was finally obtained after a
global reduction using LAH. Of course, use of (R)-2h, readily
prepared from (R)-1,1′-bi(2-naphthol), would have produced natural
corynantheidol. These syntheses compare very favorably with
previous syntheses in terms of both length and overall yields.13b,14,17
In summary, a general methodology for the enantioselective
allylation of cyclic imines has been developed. The versatility of
the allylation products has been demonstrated through efficient total
syntheses of several naturally occurring alkaloids, and we expect
that more applications of this methodology will be forthcoming.
Acknowledgment. We thank the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) for financial support.
Supporting Information Available: Procedures for allylborations
and spectroscopic data for compounds 3-9. This material is available
a Isolated yields after flash column chromatography on silica gel.
b Isolated yields after acid-base extraction. c Determined by chiral HPLC
analysis of trifluoroacetamides. d Determined by 19F NMR of its R-MTPA
amide. e The reaction was quenched using TsCl/pyridine/DMAP or (Boc)2O/
Et3N/DMAP, and the ee of the product was determined by chiral HPLC
analysis.
References
(1) Reviews: (a) Chemler, S. R.; Roush, W. R. In Modern Carbonyl
Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, Germany, 2000;
Chapter 11. (b) Denmark, S. E.; Fu, J. Chem. ReV. 2003, 103, 2763-
2793.
(2) Recent developments: (a) Canales, E.; Prasad, K. G.; Soderquist, J. A. J.
Am. Chem. Soc. 2005, 127, 11572. (b) Rauniyar, V.; Hall, D. G. Angew.
Chem., Int. Ed. 2006, 45, 2426.
Scheme 1. Synthesis of (+)-Crispine A (4)
(3) Chen, G. M.; Ramachandran, P. V.; Brown, H. C. Angew. Chem., Int.
Ed. 1999, 38, 825 and references therein.
(4) For recent examples, see: (a) Kobayashi, S.; Ogawa, C.; Konishi, H.;
Sugiura, M. J. Am. Chem. Soc. 2003, 125, 6610. (b) Berger, R.; Rabbat,
P. M. A.; Leighton, J. L. J. Am. Chem. Soc. 2003, 125, 9596. (c) Fernandes,
R. A.; Stimac, A.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 14133.
(d) Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126,
5686. (e) Ogawa, C.; Sugiura, M.; Kobayashi, S. Angew. Chem., Int. Ed.
2004, 43, 6491. (f) Ramachandran, P. V.; Burghardt, T. E.; Bland-Berry,
L. J. Org. Chem. 2005, 70, 7911.
Scheme 2. Synthesis of R-(-)-Coniine‚HCl (5)
(5) For recent reviews, see: (a) Ding, H.; Friestad, G. K. Synthesis 2005,
2815. (b) Kobayashi, S.; Sugiura, M.; Ogawa, C. AdV. Synth. Catal. 2004,
346, 1023.
(6) Diastereoselective syntheses of chiral R-allyl cyclic amines: (a) Meyers,
A. I.; Dickman, D. A.; Boes, M. Tetrahedron 1987, 43, 5095. (b) Suzuki,
H.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 1995, 36, 6709. (c) Hatano,
B.; Haraguchi, Y.; Kozima, S.; Yamaguchi, R. Chem. Lett. 1995, 11, 1003.
(d) Adam, S.; Pannecoucke, X.; Combret, J.-C.; Quirion, J.-C. J. Org.
Chem. 2001, 66, 8744.
Scheme 3. Synthesis of ent-Corynantheidol (9)a
(7) An enantioselective allylation of activated cyclic iminium ions using a
chiral allylsilane has been reported: Yamaguchi, R.; Tanaka, M.; Matsuda,
T.; Fujita, K. Chem. Commun. 1999, 2213.
(8) Total syntheses involving chiral R-allyl cyclic amines: (a) Yamaguchi,
R.; Otsuji, A.; Uchimoto, K. J. Am. Chem. Soc. 1988, 110, 2186. (b)
Meyers, A. I.; Highsmith, T. K.; Buonora, P. T. J. Org. Chem. 1991, 56,
2960. (c) Yamaguchi, R.; Otsuji, A.; Uchimoto, K.; Kozima, S. Bull. Chem.
Soc. Jpn. 1992, 65, 298. (d) Birman, V. B.; Rawal, V. H. J. Org. Chem.
1998, 63, 9146.
(9) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 1996, 118,
8489.
(10) Itoh, T.; Miyazaki, M.; Fukuoka, H.; Nagata, K.; Ohsawa, A. Org. Lett.
2006, 8, 1295.
(11) Wu, T. R.; Shen, L.; Chong, J. M. Org. Lett. 2004, 6, 2701.
(12) Scully, F. E., Jr. J. Org. Chem. 1980, 45, 1515.
a Reaction conditions: (a) (()-HO2CCH(Br)CH2CH3, DCC, CH2Cl2; (b)
OsO4, NaIO4, 2,6-lutidine, 1,4-dioxane/H2O; (c) Ph3PdCHCOOEt, CH2Cl2,
82% for 3 steps; (d) n-BuLi (1.2 equiv), THF, 63%; (e) LAH (15 equiv),
THF, 79%.
(13) (a) Zhang, Q.; Tu, G.; Zhao, Y.; Cheng, T. Tetrahedron 2002, 58, 6795.
(b) Szawkalo, J.; Zawadzka, A.; Wojtasiewicz, K.; Leniewski, A.;
Drabowicz, J.; Czarnocki, Z. Tetrahedron: Asymmetry 2005, 16, 3619.
(14) Recent enantioselective syntheses of coniine: (a) Sattely, E. S.; Cortez,
G. A.; Moebius, D. C.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem.
Soc. 2005, 127, 8526. (b) Gommermann, N.; Knochel, P. Chem. Commun.
2004, 2324. (c) Glorius, F.; Spielkamp, N.; Holle, S.; Goddard, R.;
Lehmann, C. W. Angew. Chem., Int. Ed. 2004, 43, 2850.
(15) Shellard, E. J.; Houghton, P. J. Planta Med. 1973, 24, 13.
(16) Mixtures of diastereomers were obtained from which compound 8 could
be isolated in 63% yield by flash chromatography. Other radical cyclization
methods (e.g., Bu3SnH/AIBN or SmI2) and a Reformatsky process (CuCN/
Zn) were attempted but gave low diastereselectivities or low yields.
(17) (a) Yu, S.; Berner, O. M.; Cook, J. M. J. Am. Chem. Soc. 2000, 122,
7827. (b) Beard, R. L.; Meyers, A. I. J. Org. Chem. 1991, 56, 2091.
sunobu reaction yielded (+)-crispine A (4), an antitumor alkaloid
isolated from C. crispus (Scheme 1).13
Coniine (5), an alkaloid that has been the target of innumerable
demonstrations of synthetic methodologies,14 could be obtained in
one pot from imine 1h (Scheme 2).
This allylboration methodology was also applied to the total
synthesis of the enantiomer of a more complex alkaloid corynan-
theidol, isolated from leaves of Mitragyna parVifolia (Roxb.) Korth
(Scheme 3).15 Thus, allylation product 3g was treated with (()-2-
bromobutyric acid and DCC to give amide 6, which was in turn
JA0636791
9
J. AM. CHEM. SOC. VOL. 128, NO. 30, 2006 9647