C O M M U N I C A T I O N S
Table 2. (R)-1-Catalyzed anti-Mannich-Type Reactions of
Table 3. (R)-1-Catalyzed anti-Mannich-Type Reactions of Cyclic
Ketonesa
Ketonesa
time
(h)
yieldb
(%)
drc
anti/syn
eed
(%)
R1
R2
R3
product
catalyst
(equiv)
yieldb
(%)
drc
anti/syn
eed
(%)
entry
entry
X
R
product
1
Et
Me
Me
Me
Et
Et
20
48
t-Bu 20
4
4
5
6
7
91
77
93
76
85f
97:3
97:3
97
98
95
82
90
1e CH2
2
3
Et
i-Pr
t-Bu
0.1
0.05
0.05
11
12
13
96 >99:1 96
94 >99:1 94
92 >99:1 95
2e Et
CH2
CH2
3
4
5
Et
n-Pr Et
Me Me
>99:1
>99:1
∼10:1
Et
Et
96
5
(99)f
4
5
6
7
8
9
CH2
S
S
O
CH2CHdCH2 0.05
14
15
15
16
17
17
95 >99:1 95
78 >99:1 99
71 >99:1 97
82 >95:5 86
87 >99:1 97
80 >99:1 96
(>99:1)g (>99)g
Et
Et
Et
0.1
0.05
0.1
0.1
0.05
6h Me Me
Et
Et
5
ent-7
81f
∼10:1
(>99:1)g
∼10:1
88
(99)g
92
91
84
7
8
9
Me Et
Me CH2CHdCH2 Et
Me (CH2)3Cl Et
10
14
14 10
8
9
81f
85
68
C(OCH2)2 Et
C(OCH2)2 Et
>95:5
>95:5
a Typical conditions: imine (0.5 mmol, 1 equiv), ketone (1.0 mmol, 2
a Typical conditions: to a solution of imine (0.5 mmol, 1 equiv) and
equiv), (R)-1 (0.05 mmol, 0.1 equiv or 0.025 mmol, 0.05 equiv), and 2-PrOH
(1.0 mL), 25 °C. b Isolated yield. c Determined by NMR of isolated products.
d Determined by chiral-phase HPLC of the anti-product. e Ketone (5.0 mmol,
10 equiv) was used. f Data after crystallization.
ketone (5.0 mmol, 10 equiv) in 2-PrOH (1.0 mL), (R)-1 (0.05 mmol, 0.1
equiv) was added, and the mixture was stirred at 25 °C. b Isolated yield
(containing anti- and syn-diastereomers). c Determined by NMR of isolated
products. d Determined by chiral-phase HPLC for the anti-product. e Ketone
(4 equiv) and (R)-1 (0.05 equiv) at 4 °C. f Containing regioisomer (∼5-
10%). g Data after crystallization are shown in parentheses. The dr was
determined by HPLC. h Catalyst (S)-1 was used.
Acknowledgment. This research was supported in part by The
Skaggs Institute for Chemical Biology. We thank Dr. Raj K. Chadha
for X-ray structural analysis.
interaction like the one shown in Scheme 1b and enamine formation
of ketones with 1 should be faster than that with 2.
Supporting Information Available: Experimental procedures,
characterization data, spectral data, and X-ray crystal structures of 7
and 13. This material is available free of charge via the Internet at
In fact, the (R)-1-catalyzed reaction was significantly faster than
the 2-catalyzed reaction and afforded the anti-Mannich product
(2S,3R)-4 in good yield with high diastereo- and enantioselectivities
(Table 1, entry 2), supporting our design considerations. When the
position of the carboxylic acid group on the pyrrolidine ring was
changed from the 2- to the 3-position (that is, from proline to cata-
lyst 1), the stereochemistry of the product of the catalyzed reaction
was altered from syn to anti. Catalyst (S)-3, which possesses a sul-
fonamide group, also catalyzed the reaction and afforded the anti-
product, but the reaction catalyzed by 1 was faster and afforded
higher enantioselectivity than the 3-catalyzed reaction. These results
indicate that the acid functionality at the 3-position on the pyrroli-
dine ring plays an important role in properly positioning the imine,
as shown in Scheme 1d, for a faster reaction rate and for affording
the anti-products with high diastereo- and enantioselectivities.
Evaluation of the (R)-1-catalyzed reaction to afford (2S,3R)-anti-4
in various solvents at room temperature showed that the reaction
in 2-PrOH provided the highest reaction rate, yield, anti-selectivity,
and enantioselectivity of the solvents tested (Table 2, entry 1 and
Supporting Information).
Amino acid (R)-1 catalyzed Mannich-type reactions between a
variety of ketones and R-imino esters and afforded the anti-products
in good yields with high diastereo- and enantioselectivities in most
cases (Tables 2 and 3). For the reactions of unsymmetrical methyl
alkyl ketones, the reaction occurred predominantly at the more
substituted R-position of the ketones (Table 2, entries 5-9). The
regio-, diastereo-, and enantiomeric purities of the anti-products
were readily improved by crystallization (Table 2, entries 5 and 6
and Table 3, entry 3). For the reactions of six-membered cyclic
ketones, use of only 5 mol % of catalyst 1 and 2 equiv of ketone
to the imine afforded the desired anti-products in good yields within
approximately 12 h.
References
(1) (a) Kobayashi, S.; Ishitani, H.; Ueno, M. J. Am. Chem. Soc. 1998, 120,
431. (b) Matsunaga, S.; Yoshida, T.; Morimoto, H.; Kumagai, N.;
Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8777.
(2) (a) Notz, W.; Tanaka, F.; Watanabe S.; Chowdari, N. S.; Turner, J. M.;
Thayumanuvan, R.; Barbas, C. F., III. J. Org. Chem. 2003, 68, 9624 and
references therein. (b) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. Synlett
2004, 558.
(3) (a) Mitsumori, S.; Zhang, H.; Cheong, P. H.-Y.; Houk, K. N.; Tanaka,
F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 1040. (b) Kano, T.;
Yamaguchi, Y.; Tokuda, O.; Maruoka, K. J. Am. Chem. Soc. 2005, 127,
16408. (c) Franzen, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.;
Kjaersgaard, A.; Jorgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296.
(d) Cordova, A.; Barbas, C. F., III. Tetrahedron Lett. 2002, 43, 7749.
(4) (a) Notz, W.; Watanabe, S.; Chowdari, N. S.; Zhong, G.; Betancort, J.
M.; Tanaka, F.; Barbas, C. F., III. AdV. Synth. Catal. 2004, 346, 1131
and references therein. (b) Westermann, B.; Neuhaus, C. Angew. Chem.,
Int. Ed. 2005, 44, 4077. (c) Enders, D.; Grondal, C.; Vrettou, M.; Raabe,
G. Angew. Chem., Int. Ed. 2005, 44, 4079. (d) Wang, W.; Wang, J.; Li,
H. Tetrahedron Lett. 2004, 45, 7243. (e) Trost, B.; Terrell, L. R. J. Am.
Chem. Soc. 2003, 125, 338. (f) Sugita, M.; Yamaguchi, A.; Yamagawa,
N.; Handa, S.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2005, 7, 5339. (g)
List, B. J. Am. Chem. Soc. 2000, 122, 9336.
(5) Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, V. J. Am. Chem. Soc. 2006,
128, 2778.
(6) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. J. Am. Chem. Soc. 2005,
127, 11256.
(7) (a) Ferraris, D.; Young, B.; Cox, C.; Drury, W. J., III; Dudding, T.; Lectka,
T. J. Org. Chem. 1998, 63, 6090. (b) Ferraris, D.; Young, B.; Cox, C.;
Dudding, T.; Drury, W. J., III; Ryzhkov, L.; Taggi, A. E.; Lectka, T. J.
Am. Chem. Soc. 2002, 124, 67. (c) Hamada, T.; Manabe, K.; Kobayashi,
S. J. Am. Chem. Soc. 2004, 126, 7768.
(8) (a) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048. (b)
Poulsen, T. B.; Alemparte, C.; Saaby, S.; Bella, M.; Jorgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 2896. (c) Hamashima, Y.; Sasamoto,
N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem.,
Int. Ed. 2005, 44, 1525. (d) Hayashi, Y. Urushima, T.; Shoji, M.;
Uchimaru, T.; Shiina, I. AdV. Synth. Catal. 2005, 347, 1595. (e) Uraguchi,
D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356. (f) Akiyama, T.; Itoh,
J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566. (g)
Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc.
2004, 126, 3734. (h) Wenzel, A.; Jacobsen, E. N. J. Am. Chem. Soc. 2002,
124, 12964.
In summary, we have developed the (R)-1- and (S)-1-catalyzed
anti-selective Mannich-type reactions of unmodified ketones that
afford high diastereo- and enantioselectivities. We have demon-
strated that the position of the acid group on the pyrrolidine ring
directs the stereoselection of the catalyzed reaction, providing either
syn- or anti-Mannich products.
JA062950B
9
J. AM. CHEM. SOC. VOL. 128, NO. 30, 2006 9631