Published on Web 07/22/2006
Intramolecular Diels-Alder/1,3-Dipolar Cycloaddition Cascade
of 1,3,4-Oxadiazoles
Gregory I. Elliott, James R. Fuchs, Brian S. J. Blagg, Hayato Ishikawa,
Houchao Tao, Z.-Q. Yuan, and Dale L. Boger*
Contribution from the Department of Chemistry and The Skaggs Institute for Chemical Biology,
The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
Received February 21, 2006; E-mail: boger@scripps.edu
Abstract: Full details of a systematic exploration of the intramolecular [4 + 2]/[3 + 2] cycloaddition cascade
of 1,3,4-oxadiazoles are disclosed in which the scope and utility of the reaction are defined.
Introduction
In the development of a synthetic approach to the vinca
alkaloids based on the cycloaddition reactions of electron-
deficient heterocyclic azadienes,1-3 we reported the first in-
tramolecular examples of a tandem Diels-Alder/1,3-dipolar
cycloaddition reaction of 1,3,4-oxadiazoles.4-6 Prior to these
studies, Vasilev,7 Sauer,8 Seitz,9 and Warrener10 each disclosed
examples of the participation of electron-deficient and typically
symmetrical 1,3,4-oxadiazoles in an intermolecular reaction
cascade with electron-rich or strained olefins providing 2:1
cycloadducts (Figure 1). The reactions with such alkenes proceed
by an initial inverse electron demand Diels-Alder reaction to
provide a cycloadduct that loses N2 to generate a carbonyl ylide
Figure 1. 1,3,4-Oxadiazole cycloaddition cascade.
that in turn further reacts with the alkene in a 1,3-dipolar
cycloaddition (Figure 1). The initial 1:1 adducts were not
observed, and the second 1,3-dipolar cycloaddition proved faster
than the initiating Diels-Alder reaction limiting the synthetic
potential of the process to the generation of symmetrical 2:1
cycloadducts. Herein we provide full details of the examination
of the intramolecular cycloaddition cascade of 1,3,4-oxadiazoles
highlighting the advances made since our initial disclosure4 that
extend the range of alkenes and oxadiazoles that participate in
the reaction, permit the use of unsymmetrical dienophiles and
oxadiazoles, control the cycloaddition regioselectivity and
diastereoselectivity, and define the scope and utility of the
tandem [4 + 2]/[3 + 2] cycloaddition reactions of such hetero-
cyclic azadienes.
(1) The Alkaloids; Brossi, A., Suffness, M., Eds.; Academic: San Diego, 1990.
(2) (a) Boger, D. L. Tetrahedron 1983, 34, 2869. Boger, D. L. Chem. ReV.
1986, 86, 781. (b) Boger, D. L. Chemtracts: Org. Chem. 1996, 9, 149. (c)
Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic
Synthesis; Academic: San Diego, 1987.
(3) Benson, S. C.; Lee, L.; Yang, L.; Snyder, J. K. Tetrahedron 2000, 56,
1165.
(4) Wilkie, G. D.; Elliott, G. I.; Blagg, B. S. J.; Wolkenberg, S. E.; Soenen,
D. R.; Miller, M. M.; Pollack, S.; Boger, D. L. J. Am. Chem. Soc. 2002,
124, 11292.
(5) (a) Anhydrolycorinone: Wolkenberg, S. E.; Boger, D. L. J. Org. Chem.
2002, 67, 7361. (b) Minovine: Yuan, Z.-Q.; Ishikawa, H.; Boger, D. L.
Org. Lett. 2005, 7, 741. (c) Vindoline: Choi, Y.; Ishikawa, H.; Velcicky,
J.; Elliott, G. I.; Miller, M. M.; Boger, D. L. Org. Lett. 2005, 7, 4539. (d)
Vindorosine: Elliott, G. I.; Velcicky, J.; Ishikawa, H.; Li, Y.; Boger, D.
L. Angew. Chem., Int. Ed. 2006, 45, 620.
(6) Ishikawa, H.; Elliott, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L. J. Am.
Chem. Soc. 2006, 128, 10596.
(7) (a) Vasil´ıev, N. V.; Lyashenko, Y. E.; Kolomiets, A. F.; Sokolskii, G. A.
Khim. Geterostsikl. Soedin. 1987, 562. (b) Vasil´ıev, N. V.; Lyashenko, Y.
E.; Galakhov, M. V.; Kolomiets, A. F.; Contar, A. F.; Sokolskii, G. A.
Khim. Geterotsikl. Soedin. 1990, 95. (c) Vasil´ıev, N. V.; Lyashenko, Y.
E.; Patalakha, A. E.; Sokolskii, G. A. J. Fluorine Chem. 1993, 65, 227.
(8) Thalhammer, F.; Wallfahrer, U.; Sauer, J. Tetrahedron Lett. 1988, 29, 3231.
(9) (a) Seitz, G.; Gerninghaus, C. H. Pharmazie 1994, 49, 102. (b) Seitz, G.;
Wassmuth, H. Chem.-Ztg. 1988, 112, 80.
(10) (a) Warrener, R. N.; Margetic, D.; Foley, P. J.; Butler, D. N.; Winling, A.;
Beales, K. A.; Russell, R. A. Tetrahedron 2001, 57, 571. (b) Warrener, R.
N.; Margetic, D.; Tiekink, E. R. T.; Russell, R. A. Synlett 1997, 196. (c)
Warrener, R. N.; Wang, S.; Maksimovic, L.; Tepperman, P. M.; Butler, D.
N. Tetrahedron Lett. 1995, 36, 6141. (d) Warrener, R. N.; Elsey, G. M.;
Russell, R. A.; Tiekink, E. R. T. Tetrahedron Lett. 1995, 36, 5275. (e)
Warrener, R. N.; Maksimovic, L.; Butler, D. N. J. Chem. Soc., Chem.
Commun. 1994, 1831. (f) Warrener, R. N.; Butler, D. N.; Liao, W. Y.;
Pitt, I. G.; Russell, R. A. Tetrahedron Lett. 1991, 32, 1889. (g) Warrener,
R. N.; Groundwater, P.; Pitt, I. G.; Butler, D. N.; Russell, R. A. Tetrahedron
Lett. 1991, 32, 1885. (h) Review: Warrener, R. N. Eur. J. Org. Chem.
2000, 3363.
Results and Discussion
Initiating Dienophile. Given that our studies to date have
been conducted concurrent with the development of a synthetic
approach to vindoline,6 the initial substrates examined bear a
tethered indole to serve as the dipolarophile trap of the in situ
generated carbonyl ylide.11 An unusually wide range of tethered
dienophiles were found to be effective at initiating the reaction
cascade (Scheme 1). In each case, a single diastereomer of the
(11) (a) Padwa, A.; Price, A. T. J. Org. Chem. 1998, 63, 556 and 1995, 60,
6258. (b) Padwa, A.; Lynch, S. M.; Mejia-Oneta, J. M.; Zhang, H. J. Org.
Chem. 2005, 70, 2206. (c) Mejia-Oneta, J. M.; Padwa, A. Org. Lett. 2004,
6, 3241. (d) Mejia-Oneta, J. M.; Padwa, A. Tetrahedron Lett. 2004, 45,
9115.
9
10.1021/ja0612549 CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 10589-10595
10589