Analytical Chemistry
Article
Table 3. Quantitation of Acr−DNA Adducts in Genomic DNA from A549 and Human Leukocytes
Acr−DNA level (adducts per 108 bases)
sample
gender
amount of DNA (μg)
α-AcrdA
α-AcrdC
α-AcrdG
γ-AcrdG
A549
−
male
20
18
13
12
9
1.4 0.3
8.0 0.4
2.5 0.3
8.7 0.3
4.8 0.2
20 0.3
8.7 6.6
3.6 0.3
6.2 0.3
3.5 0.8
1.8 0.7
ND
15 3.4
8.4 0.5
9.3 0.8
11 0.8
8.8 0.6
7.5 0.2
9.0 1.3
1
2
3
4
5
a
female
male
ND
6.8 0.2
ND
ND
female
male
ND
9
16 0.8
3.3 0.7
b
mean
a
b
ND indicates “undetectable”. Calculated from samples 1 to 5, not including the A549 DNA sample. Each sample was analyzed at least three times.
(7) Uchida, K.; Kanematsu, M.; Morimitsu, Y.; Osawa, T.; Noguchi,
N.; Niki, E. J. Biol. Chem. 1998, 273, 16058−16066.
(8) Anderson, M. M.; Hazen, S. L.; Hsu, F. F.; Heinecke, J. W. J. Clin.
Invest. 1997, 99, 424−432.
nium bicarbonate. In contrast, the other ammonium salts do
not have this enhancement effect. These improvements allow
us to accurately determine the levels of each isomer of AcrdG.
By employing the developed sensitive method, α-AcrdG is
found in cultured human cells even without Acr treatment.
Although its level is just comparable to 30% of γ-AcrdG, α-
AcrdG should be paid more attention regarding its higher
mutation potency. Besides AcrdG isomers, non-dG adducts
(AcrdA and AcrdC) are also found in untreated A549 cells and
leukocytes. Some non-dG adducts (α-AcrdA) may be present at
levels even comparable to that of the predominant γ-AcrdG.
These results may suggest that the Acr−DNA adducts can be
spontaneously generated through normal cellular metabolism.
(9) O’Brien, P. J.; Siraki, A. G.; Shangari, N. Crit. Rev. Toxicol. 2005,
35, 609−612.
(10) Williams, T. I.; Lynn, B. C.; Markesbery, W. R.; Lovell, M. A.
Neurobiol. Aging 2006, 27, 1094−1099.
(11) Bradley, M. A.; Markesbery, W. R.; Lovell, M. A. Free Radic. Biol.
Med. 2010, 48, 1570−1576.
(12) Lovell, M. A.; Xie, C.; Markesbery, W. R. Neurobiol. Aging 2001,
22, 187−194.
(13) Liu, X.; Lovell, M. A.; Lynn, B. C. Anal. Chem. 2005, 77, 5982−
5989.
(14) Uchida, K. Free Radic. Biol. Med. 2000, 28, 1685.
(15) Chung, F. L.; Young, R.; Hecht, S. S. Cancer Res. 1984, 44, 990−
995.
(16) Parent, R. A.; Caravello, H. E.; San, R. H. C. J. Appl. Toxicol.
1996, 16, 103−108.
CONCLUSIONS
■
We developed a sensitive and accurate method for simulta-
neous quantification of α-AcrdG (two stereoisomers), γ-AcrdG,
α-AcrdC, and α-AcrdA in human cells using stable isotope
dilution UHPLC-MS/MS, which only requires 3 μg of genomic
DNA for each analysis. We also demonstrate that ammonium
bicarbonate not only improves the separation of the Acr−DNA
adducts and their isomers but also enhances the MS detection
of modified 2′-deoxyribonucleosides with difficulty in proto-
nation during the ESI process.
(17) Marnett, L. J.; Hurd, H. K.; Hollstein, M. C.; Levin, D. E.;
Esterbauer, H.; Ames, B. N. Mutat. Res. 1985, 148, 25−34.
(18) Kawanishi, M.; Matsuda, T.; Nakayama, A.; Takebe, H.; Matsui,
S.; Yagi, T. Mutat. Res. 1998, 417, 65−73.
(19) Wang, H. T.; Zhang, S.; Hu, Y.; Tang, M. S. Chem. Res. Toxicol.
2009, 22, 511−517.
(20) Nath, R. G.; Chung, F. L. Proc. Natl. Acad. Sci. U.S.A. 1994, 91,
7491−7495.
(21) Nath, R. G.; Ocando, J. E.; Chung, F. L. Cancer Res. 1996, 56,
452−456.
AUTHOR INFORMATION
■
Corresponding Author
Notes
(22) Nath, R. G.; Ocando, J. E.; Guttenplan, J. B.; Chung, F. L.
Cancer Res. 1998, 58, 581−584.
(23) Chen, H. J.; Lin, W. P. Anal. Chem. 2009, 81, 9812−9818.
(24) Zhang, S.; Villalta, P. W.; Wang, M.; Hecht, S. S. Chem. Res.
Toxicol. 2007, 20, 565−571.
The authors declare no competing financial interest.
(25) Sodum, R.; Shapiro, R. Bioorg. Chem. 1988, 16, 272−282.
(26) Smith, R. A.; Williamson, D. S.; Cerny, R. L.; Cohen, S. M.
Cancer Res. 1990, 50, 3005−3012.
ACKNOWLEDGMENTS
■
This work was supported by grants from the National Basic
Research Program of China (2011CB936001, 2009CB421065,
and 2011YQ060084) and the National Natural Science
Foundation of China (21077129, 20890112, and 21125523).
(27) Pawiowicz, A. J.; Munter, T.; Klika, K. D.; Kronberg, L. Bioorg.
Chem. 2006, 34, 39−48.
(28) Pawłowicz, A. J.; Munter, T.; Zhao, Y.; Kronberg, L. Chem. Res.
Toxicol. 2006, 19, 571−576.
(29) Kawai, Y.; Furuhata, A.; Toyokuni, S.; Aratani, Y.; Uchida, K. J.
Biol. Chem. 2003, 278, 50346−50354.
REFERENCES
■
(30) Chenna, A.; Iden, C. R. Chem. Res. Toxicol. 1993, 6, 261−268.
(31) Pawłowicz, A. J.; Klika, K. D.; Kronberg, L. Eur. J. Org. Chem.
2007, 1429−1437.
(1) Stevens, J. F.; Maier, C. S. Mol. Nutr. Food Res. 2008, 52, 7−25.
(2) Hecht, S. S. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15725−15726.
(3) Ho, S. S.; Yu, J. Z.; Chu, K. W.; Yeung, L. L. J. Air Waste Manage.
Assoc. 2006, 56, 1091−1098.
(4) A comprehensive analysis of biodiesel impacts on exhaust
emissions, Draft Technical Report, United States Environmental
Protection Agency, 2002.
(32) Pawłowicz, A. J.; Kronberg, L. Chem. Biodivers. 2008, 5, 177−
188.
(33) Foiles, P. G.; Akerkar, S. A.; Chung, F. L. Carcinogenesis 1989,
10, 87−90.
(34) McDiarmid, M. A.; Iype, T.; Kolodner, K.; Jacobson-Kram, D.;
Strickland, P. T. Mutat. Res. 1991, 248, 93−99.
(35) Nordhoff, E.; Kirpekar, F.; Roepstorff, P. Mass Spectrom. Rev.
1996, 15, 67−138.
(5) Feng, Z.; Hu, W.; Hu, Y.; Tang, M. S. Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 15404−15409.
(6) Chung, F. L.; Chen, H. J.; Nath, R. G. Carcinogenesis 1996, 17,
2105−2111.
3196
dx.doi.org/10.1021/ac3034695 | Anal. Chem. 2013, 85, 3190−3197