C O M M U N I C A T I O N S
Table 1. Triplet Energy of the Bridge (ET),17 Turn-on Voltages
(Vturn-on), and Quantum Efficiency (ηMax) Values for OLEDs
Fabricated Using 1a-d2 a
emission with high color purity. To the best of our knowledge this
is the first example of molecular wire behavior demonstrated to
take place in solid state and in functional OLEDs.
ET
±
0.10
Vturn
ηmax
(%)c
-
(V)b
on
Acknowledgment. Support from the NSF (Grant DMR-0306117
to P.A.), A. P. Sloan Foundation (P.A.), BGSU (TIE grant to P.A.),
Ohio Laboratory for Kinetic Spectrometry, and a McMaster
fellowship (V.M.) is acknowledged. We are grateful to Prof. M.
A. J. Rodgers and Dr. E. Danilov for helpful discussions and
assistance.
Note Added after ASAP Publication: In the version published
on the Internet August 31, 2006, there were formatting errors in
the Supporting Information on pages 26 and 29. The final version
published September 1, 2006, and the print version are correct.
compound
(eV)
1a
1b
1c
1d
2.86
2.43
2.25
2.18
10.0
4.3
3.9
3.9
0.012
0.039
0.131
0.204
a The performance of the OLEDs using 1c-d improves with better triplet
energy alignment of the components. b Defined as the bias needed to obtain
a luminance of >0.2 cd/m2. c External maximum efficiency of the diodes.22
Supporting Information Available: Procedures and characteriza-
tion of compounds 1a-d and synthetic precursors. Additional transient
spectra, lifetime fits, and construction of the OLEDs. This information
References
(1) (a) Organic Electroluminescence; Kafafi, Z. H.; Ed. CRC Press: Boca
Raton, FL, 2005. (b) Shinar, J. Organic Light-Emitting DeVices - A
SurVey; Springer: Berlin, 2003.
(2) (a) Koehler, A.; Wilson, J. Org. Electron. 2003, 4, 179. (b) Wilson, J. S.;
Dhoot, A. S.; Seeley, A. J. A. B.; Khan, M. S.; Koehler, A.; Friend, R.
H. Nature 2001, 413, 828.
(3) Scherf, U.; List, E. J. W. AdV. Mater. 2002, 14, 477.
(4) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(5) (a) Sudhakar, M.; Djurovich, P. I.; Hogen-Esch, T. E.; Thompson, M. E.
J. Am. Chem. Soc. 2003, 125, 7796. (b) Evans, N. R.; Devi, L. S.; Mak,
C. S. K.; Watkins, S. E.; Pascu, S. I.; Koehler, A.; Friend, R. H.; Williams,
C. K.; Holmes, A. B. J. Am. Chem. Soc. 2006, 128, 6647.
(6) Avilov, I.; Marsal, P.; Bre´das, J.-L.; Beljonne, D. AdV. Mater. 2004, 16,
1624.
(7) (a) Baldo, M. A.; Forrest, S. R.; Thompson, M. E. In Organic Electrolu-
minescence; Kafafi, Z. H. Ed.; Taylor & Francis: Boca Raton, FL, 2005;
p 274. (b) Holder, E.; Langeveld, B. M. W.; Schubert, U. S. AdV. Mater.
2005, 17, 1109.
(8) (a) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.;
Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151. (b) Cleave, V.;
Yahioglu, G.; Le Barny, P.; Friend, R. H.; Tessler, N. AdV. Mater. 1999,
11, 285. (c) Cleave, V.; Yahioglu, G.; Le Barny, P.; Hwang, D.-H.;
Holmes, A. B.; Friend, R. H.; Tessler, N. AdV. Mater. 2001, 13, 44.
(9) (a) Chen, F.-C.; He, G.; Yang, Y. Appl. Phys. Lett. 2003, 82, 1006. (b)
Chen, F.-C.; Chang, S.-C.; He, G.; Pyo, S.; Yang, Y.; Kurotaki, M.; Kido,
J. J. Polym. Sci., Part B: Polym. Phys. 2003, 41, 2681.
(10) (a) Sandee, A. J.; Williams, C. K.; Evans, N. R.; Davies, J. E.; Boothby,
C. E.; Kohler, A.; Friend, R. H.; Holmes, A. B. J. Am. Chem. Soc. 2004,
126, 7041. (b) Chen, X.; Liao, J.-L.; Liang, Y.; Ahmed, M. O.; Tseng,
H.-E.; Chen, S.-A. J. Am. Chem. Soc. 2003, 125, 636.
(11) (a) Dexter, D. L. J. Chem. Phys. 1953, 21, 836. (b) Fo¨rster, T. Discuss.
Faraday. Soc. 1959, 27, 7. (c) Speiser, S. Chem. ReV. 1996, 96, 1953.
(12) (a) Marcus, R. A. Discuss. Faraday. Soc. 1960, 29, 21. (b) Closs, G. L.;
Johnson, M. D.; Miller, J. R.; Piotrowiak, P. J. Am. Chem. Soc. 1989,
111, 3751
(13) (a) Weiss, E. A.; Tauber, M. J.; Kelley, R. F.; Ahrens, M. J.; Ratner, M.
A.; Wasielewski, M. R. J. Am. Chem. Soc. 2005, 127, 11842. (b)
Goldsmith, R. H.; Sinks, L. E.; Kelley, R. F.; Betzen, L. J.; Liu, W.;
Weiss, E. A.; Ratner, M. A.; Wasielewski, M. R. Proc. Natl. Acad. Sci.
2005, 102, 3540. (c) Wasielewski, M. R. J. Org. Chem. 2006, 71, 5051.
(14) Tinnefeld, P.; Heilemann, M.; Sauer, M. Chem. Phys. Chem. 2005, 6,
217
(15) Welter, S.; Lafolet, F.; Cecchetto, E.; Vergeer, F.; De Cola, L. Chem.
Phys. Chem. 2005, 6, 2417.
(16) Burrows, H. D.; Fernandes, M.; de Melo, J. S.; Monkman, A. P.;
Navaratnam, S. J. Am. Chem. Soc. 2003, 125, 15310.
(17) Wasseberg, D.; Dudek, S. P.; Meskers, S. C. J.; Janssen, R. A. J. Chem.
Phys. Lett. 2005, 411, 273.
(18) Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin
Complexes; Academic Press: London, 1992.
(19) Montes, V. A.; Pohl, R.; Shinar, J.; Anzenbacher, P., Jr. Chem.sEur. J.
2006, 12, 4523.
(20) For more details see Supporting Information.
(21) Michl, J.; Bonacˇic´-Koutecky´, V. Electronic Aspects of Organic Photo-
chemistry; Wiley-Interscience: New York, 1990; p 85.
(22) O’Brien, D.; Bleyer, A.; Lidzey, D. G.; Bradley, D. D. C.; Tsutsui, T. J.
Appl. Phys. 1997, 82, 2662.
Figure 6. Schematic triplet energy alignment in materials 1a-d.
on the structure and alignment of the triplet energies of the
components of the emissive materials (Table 1). Thus 1a, with the
poorest alignment of the 3donor-3bridge-3acceptor levels, requires
the highest driving voltage and shows the lowest efficacy (ηmax) of
the electron-to-photon conversion. In the materials 1c-d with longer
oligofluorenes, turn-on voltages as low as 3.9 V were observed.
Also, the quantum efficiency (ηmax) was found to be an order of a
magnitude better in materials 1c-d with good triplet level align-
ment than that from compounds bearing shorter fluorene bridges
(1a-b) (Table 1). Significantly higher luminance is obtained from
optimized devices with advanced architectures, particularly when
a hole-blocking layer is employed. Here, we prefer simple double-
layer devices because the observed effects are easier to attribute to
the effective energy transfer.
The trend in the electroluminescence performance is attributed
to the stepwise decrease in the triplet energy of the oligofluorene
moiety as the bridge length increases.17 As depicted in Figure 6,
the triplet energies for fluorene and bifluorene are higher than that
of Alq3, thereby acting as a barrier for the triplet-triplet energy
transfer. In contrast, the triplet levels from terfluorene and quater-
fluorene are situated closer to the triplet level of Alq3 facilitating
the exchange to the incoherent hopping mechanism for triplet-
triplet energy transfer,15 as the data from femtosecond transient
spectroscopy suggest. Hence, the better device performance for
1c-d agrees with effective intramolecular triplet energy transfer
at long distances mediated by the wirelike mechanism.23
In conclusion, a series of multichromophoric emitters designed
to study energy level/distance-dependence in energy transfer were
prepared and their photophysical properties studied both in solution
and in the solid state. The materials show effective singlet and triplet
energy transfer. An improved OLED output was obtained for
systems having longer oligofluorene bridges, which showed better
alignment of triplet energy levels despite the longer donor-acceptor
distance. In the OLEDs, the order of a magnitude increase in
efficacy for materials with better triplet level alignment appears to
be due to facile triplet energy transfer. The materials exhibit red
(23) We believe that the external quantum efficacy and the higher luminance
in 1c-d were not due to intermolecular energy transfer. In fact, the dilute-
solution, thin film PL and EL were very similar, suggesting that no strong
intermolecular interaction takes place.
JA064471I
9
12438 J. AM. CHEM. SOC. VOL. 128, NO. 38, 2006