LETTER
Diastereoselective Conjugate Addition of Cyanide
1591
Castro, A. M.; Rodriguez Ramos, J. H. Angew. Chem. Int.
Ed. 2001, 40, 2507. (c) Acherki, H.; Alvarez-Ibarra, C.;
Dios, A.; Quiroga, M. L. Tetrahedron 2002, 58, 3217.
(d) Benedetti, F.; Berti, F.; Garau, G.; Martinuzzi, I.;
Norbedo, S. Eur. J. Org. Chem. 2003, 1973. (e) Steurer, S.;
Podlech, J. Eur. J. Org. Chem. 2002, 899.
A similar pathway can be followed to synthesise (S)-ba-
clofen (Scheme 2), which demonstrates the applicability
of aryl b-substituted substrates to this methodology. The
cyanide adduct (4f) was produced in a 62% yield of the
major diastereomer. Selective nitrile reduction with NiCl2
13
and NaBH4 gave the lactam 7f after in situ auxiliary
(5) Kawasaki, Y.; Fujii, A.; Nakano, Y.; Sakaguchi, S.; Ishii, Y.
J. Org. Chem. 1999, 64, 4214.
(6) Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc.
1988, 110, 1238.
cleavage. Again acidic hydrolytic opening of the lactam13a
gave the g-amino acid 6 in excellent yield and with reten-
tion of the enantiomeric purity.
(7) Typical Procedure.
The substrate 3 (1 mmol) in toluene (1 mL) was added to
Sm(Oi-Pr)3 (0.1 mmol) under N2 at 0 °C followed by
commercial acetone cyanohydrin (2 mmol). The reaction
mixture was warmed to r.t. and stirred for the indicated time.
Upon completion, wet Et2O (5 mL) was added and the
reaction mixture filtered through Celite®, washing with Et2O
and CH2Cl2. The filtrate was concentrated in vacuo and the
resulting crude material purified by silica flash column
chromatography to yield the separated diastereomers of 4.
Major diastereomer of 4a (132 mg, 59%) isolated as a
colourless oil; [a]D20 +60 (c 1, CHCl3). IR: nmax = 2965,
2243, 1779, 1703, 1390, 1209 cm–1. 1H NMR (250 MHz,
CDCl3): d = 0.89 (d, J = 7.0 Hz, 3 H, MeCHMe), 0.93 (d,
J = 7.0 Hz, 3 H, MeCHMe), 1.41 (d, J = 7.0 Hz, 3 H, Me),
2.41 (sept of d, J = 7.0, 4.0 Hz, 1 H, MeCHMe), 3.07–3.24
(m, 2 H, NCCHCH2), 3.41 (m, 1 H, NCCHCH2), 4.25 (dd,
J = 9.2, 3.4 Hz, 1 H, OCH2), 4.31 (dd, J = 9.2, 7.9 Hz, 1 H,
OCH2), 4.46 (dt, J = 7.9, 3.7 Hz, 1 H, NCH). 13C NMR (62.5
MHz, CDCl3): d = 14.7 (CH3, MeCHMe), 17.7 (CH3), 17.8
(CH3), 21.1 (CH, NCC), 28.3 (CH, MeCHMe), 39.6 (CH2,
COCH2), 58.4 (CH, NCH), 63.8 (CH2, OCH2), 122.1 (C,
CN), 154.0 [C, NC(O)O], 169.0 (C, COCH2). MS (CI):
O
O
O
CN
O
a
N
O
N
O
Cl
Cl
3f
4f
O
HCl·H2N
O
b
c
HN
OH
7f
6
Cl
(S)-Baclofen
Cl
Scheme 2 Reagents and conditions: a) Acetone cyanohydrin (2
equiv), Sm(Oi-Pr)3 (10 mol%), toluene, r.t., 23.5 h, 62% major dia-
stereomer; b) NiCl2·6H2O, NaBH4, MeOH, r.t., 1.5 h, 51%, 99% ee;
c) 4 N HCl, 100 °C, 24.5 h, 98%, 99% ee.
In conclusion, we have developed a diastereoselective
method for the hydrocyanation of a,b-unsaturated carbo-
nyl compounds bearing chiral oxazolidinone auxiliaries,
using catalytic Sm(Oi-Pr)3 and acetone cyanohydrin as
the cyanide source, and have applied the methodology to
syntheses of two drug molecules. Ongoing studies will
include further applications and extension of the samari-
um chemistry to asymmetric catalysis.
+
m/z (%) = 242 (100) [M + NH4 ]. HRMS: m/z calcd for
C11H20N3O3: 242.1505; found: 242.1498.
(8) Details will be provided in a full account of this work. We
thank Dr. A. J. P. White, Dept. of Chemistry, Imperial
College London, for this structure determination.
(9) (a) Hoekstra, M. S.; Sobieray, D. M.; Schwindt, M. A.;
Mulhern, T. A.; Grote, T. M.; Huckabee, B. K.;
Hendrickson, V. S.; Franklin, L. C.; Granger, E. J.; Karrick,
G. L. Org. Process Res. Dev. 1997, 1, 26. (b) Burk, M. J.;
de Koning, P. D.; Grote, T. M.; Hoekstra, M. S.; Hoge, G.;
Jennings, R. A.; Kissel, W. S.; Le, T. V.; Lennon, I. C.;
Mulhern, T. A.; Ramsden, J. A.; Wade, R. A. J. Org. Chem.
2003, 68, 5731. (c) Burk, M. J.; Goel, O. P.; Hoekstra, M. S.;
Mich, T. F.; Mulhern, T. A.; Ramsden, J. A. WO01 55090,
2001. (d) Hoge, G. J. Am. Chem. Soc. 2003, 125, 10219.
(e) Brenner, M.; Seebach, D. Helv. Chim. Acta 1999, 82,
2365. (f) See also ref. 2a and 3.
Acknowledgment
We thank EPSRC and GlaxoSmithKline for financial support
(CASE award to NJC).
References and Notes
(1) (a) Review of conjugate addition of cyanide: Nagata, W.;
Nozaki, H. Org. React. 1977, 25, 255. (b) For cyanide
group manipulations, see: North, M. Tetrahedron:
Asymmetry 2003, 14, 147; and references therein. (c) For a
review of stereoselective conjugate addition, see:
Armstrong, A.; Convine, N. J. In Comprehensive Organic
Functional Group Transformations II, Vol. 1; Katritzky, A.
R.; Taylor, R. J. K.; Cossy, J., Eds.; Elsevier Pergamon:
Oxford, 2005, 287; and references therein.
(2) (a) Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2003,
125, 4442. (b) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J.
Am. Chem. Soc. 2004, 126, 9928.
(3) Mita, T.; Sasaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2005, 127, 514.
(10) For selected approaches to (R)-baclofen employing
conjugate addition as the key step, see: (a) Corey, E. J.;
Zhang, F.-Y. Org. Lett. 2000, 2, 4257. (b) Baldoli, C.;
Maiorana, S.; Licandro, E.; Perdicchia, D.; Vandoni, B.
Tetrahedron: Asymmetry 2000, 11, 2007. (c) Licandro, E.;
Maiorana, S.; Baldoli, C.; Capella, L.; Perdicchia, D.
Tetrahedron: Asymmetry 2000, 11, 975. (d) Meyer, O.;
Becht, J.-M.; Helmchen, G. Synlett 2003, 1539. (e) Becht,
J.-M.; Meyer, O.; Helmchen, G. Synthesis 2003, 2805.
(11) Olpe, H.-R.; Demieville, H.; Baltzer, W. L.; Koella, W. P.;
Wolf, P.; Hass, H. L. Eur. J. Pharmacol. 1978, 52, 133.
(12) Puetz, C.; Przewosny, M. T. WO03 062185, 2003.
(13) (a) Thakur, V. V.; Nikalje, M. D.; Sudalai, A. Tetrahedron:
Asymmetry 2003, 14, 581. (b) Caddick, S.; Judd, D. B.; de
Lewis, A. K. K.; Reich, M. T.; Williams, M. R. V.
Tetrahedron 2003, 59, 5417.
(4) For selected diastereoselective approaches, see:
(a) Dahuron, N.; Langlois, N. Synlett 1996, 51. (b) Garcia
Ruano, J. L.; Cifuentes Garcia, M.; Laso, N. M.; Martin
Synlett 2006, No. 10, 1589–1591 © Thieme Stuttgart · New York