Research Article
MedChemComm
Regardless, further therapeutic development of dual DA/5-HT
releasers would need to include behavioral assessment in-
cluding drug discrimination to avoid such side-effects, espe-
cially drug candidates that are 5-HT selective.
4 A. E. Fleckenstein, T. J. Volz, E. L. Riddle, J. W. Gibb and
G. R. Hanson, Annu. Rev. Pharmacol. Toxicol., 2007, 47, 681.
5 S. G. Amara and M. S. Sonders, Drug Alcohol Depend.,
1998, 51, 87.
Another important development issue is serotonin deple-
tion and neurotoxicity. Many serotonin releasers deplete
stores of 5-HT potentially leading to neurotoxicity with
chronic use. The 5-HT releasers fenfluramine, MDMA, and
p-chloroamphetamine (PCA) all cause long-term 5-HT deple-
tion;35 PCA is even used as a behavioral tool to help un-
mask the effects of 5-HT on behavior.36 However, not all
5-HT releasers cause depletion and neurotoxicity. Meta-
chlorophenylpiperazine (mCPP), while equipotent with fen-
fluramine, was found to lack the 5-HT depleting effects of
fenfluramine37 as was our laboratory's main lead com-
pound, PAL-287.38 As part of the devlopment process, dual
DA/5-HT releaser drug candidates will need to be assessed
for 5-HT depletion in order to determine any potential neu-
rotoxicity associated with chronic use.
6 D. V. Herin, C. R. Rush and J. Grabowski, Ann. N. Y. Acad.
Sci., 2010, 1187, 76.
7 L. L. Howell and S. S. Negus, Adv. Pharmacol., 2014, 69, 129.
8 S. S. Negus and N. K. Mello, Psychopharmacology, 2003, 167, 324.
9 S. S. Negus, Neuropsychopharmacology, 2003, 28, 919.
10 S. S. Negus and N. K. Mello, Drug Alcohol Depend.,
2003, 70, 39.
11 J. Grabowski, H. Rhoades, J. Schmitz, A. Stotts, L. A.
Daruzska, D. Creson and F. G. Moeller, J. Clin.
Psychopharmacol., 2001, 21, 522.
12 J. Grabowski, J. Shearer, J. Merrill and S. S. Negus, Addict
Behav., 2004, 29, 1439.
13 L. L. Howell and H. L. Kimmel, Biochem. Pharmacol.,
2008, 75, 196.
14 R. B. Rothman and M. H. Baumann, Eur. J. Pharmacol.,
2003, 479, 23.
15 M. H. Baumann, R. D. Clark, W. L. Woolverton, S. Wee, B. E.
Blough and R. B. Rothman, J. Pharmacol. Exp. Ther.,
2011, 337, 218.
16 J. J. Burmeister, E. M. Lungren and J. L. Neisewander,
Psychopharmacology, 2003, 168, 146.
17 L. Buydens-Branchey, M. Branchey, J. Hudson, M.
Rothman, P. Fergeson and C. McKernin, Am J Addict.,
1998, 7, 142.
18 R. B. Rothman, T. Gendron and P. Hitzig, J. Subst. Abuse
Treat., 1994, 11, 273.
Conclusions
In conclusion, eleven vinylogous PAL-287 analogs with less
conformational restriction were studied, resulting in the dis-
covery of a new series of amphetamine analogs that have
transporter activity. All of the analogs were substrates for the
BATs, lending support to the notion that transporters are
able to translocate larger structures than previously believed.
Of the eleven analogs, three compounds (6, S-6, R-6) were po-
tent releasers of DA, 5-HT, and NE, with S-6 being the most
potent with EC50 values of 206 nM, 40 nM, and 138 nM, re-
spectively. This analog has the same configuration as SIJ+)-
amphetamine, and has a similar steric conformation as PAL-
287 due to the same number of carbons between the phenyl
and amine groups. Although S-6 is 10-fold less potent than
PAL-287, the two compounds share similar transporter selec-
tivities. Analog S-6 was also inactive in in vitro 5-HT2 calcium
mobilization assays, indicating no potential in vivo effects.
The unique activity profile for S-6 suggests that this com-
pound represents a new lead for identifying neurotransmitter
releasers with therapeutic potential.
19 R. B. Rothman, B. E. Blough and M. H. Baumann, Trends
Pharmacol. Sci., 2006, 27, 612.
20 R. B. Rothman, B. E. Blough, W. L. Woolverton, K. G.
Anderson, S. S. Negus, N. K. Mello, B. L. Roth and M. H.
Baumann, J. Pharmacol. Exp. Ther., 2005, 313, 1361.
21 S. S. Negus, N. K. Mello, B. E. Blough, M. H. Baumann and
R. B. Rothman, J. Pharmacol. Exp. Ther., 2007, 320, 627.
22 R. B. Rothman, M. Katsnelson, N. Vu, J. S. Partilla, C. M.
Dersch, B. E. Blough and M. H. Baumann, Eur. J.
Pharmacol., 2002, 447, 51.
23 B. E. Blough, A. Landavazo, J. S. Partilla, A. M. Decker, K. M.
Page, M. H. Baumann and R. B. Rothman, Bioorg. Med.
Chem. Lett., 2014, 24, 4754.
Acknowledgements
24 D. E. Nichols, Pharmacol. Ther., 2004, 101, 131.
25 J. González-Maeso, N. V. Weisstaub, M. Zhou, P. Chan, L.
Ivic, R. Ang, A. Lira, M. Bradley-Moore, Y. Ge, Q. Zhou, S. C.
Sealfon and J. A. Gingrich, Neuron, 2007, 53, 439.
26 R. B. Rothman and M. H. Baumann, Expert Opin. Drug Saf.,
2009, 8, 317.
This research was supported by the National Institute on
Drug Abuse Project DA12970 (BEB) and the Intramural Re-
search Program, National Institute on Drug Abuse, NIH.
27 J. M. Launay, P. Hervé, K. Peoc'h, C. Tournois, J. Callebert,
C. G. Nebigil, N. Etienne, L. Drouet, M. Humbert, G.
Simonneau and L. Maroteaux, Nat. Med., 2002, 8, 1129.
28 G. A. Higgins and P. J. Fletcher, Eur. J. Pharmacol.,
2003, 480, 151.
References
1 J. Masson, C. Sagné, M. Hamon and S. El Mestikawy,
Pharmacol. Rev., 1999, 51, 439.
2 R. B. Rothman, B. E. Blough and M. H. Baumann, Prog.
Brain Res., 2008, 172, 385.
29 G. A. Higgins, E. M. Sellers and P. J. Fletcher, Trends
Pharmacol. Sci., 2013, 34, 560.
3 G. Rudnick and J. Clark, Biochim. Biophys. Acta, 1993, 1144, 249.
Med. Chem. Commun.
This journal is © The Royal Society of Chemistry 2016