cycloaddition reactions of either 1,3,4-oxadiazole 4a or 4b,
each of which assembles the fully functionalized pentacyclic
ring system of 3 with formation of four C-C bonds and
three rings in a single step, setting all six stereocenters within
the central ring of vindoline including three contiguous and
four total quaternary centers (Figure 2).
Scheme 1
and 5b, respectively, as single diastereomers (Figure 2). The
reaction leading to 5 is initiated by an intramolecular inverse
electron demand Diels-Alder cycloaddition of the 1,3,4-
oxadiazole with the tethered enol ether. Loss of N2 from the
initial cycloadduct A provides the carbonyl ylide B (eq 1,
Table 1), which undergoes a subsequent established13 1,3-
dipolar cycloaddition with the tethered indole. Importantly,
the diene and dienophile substituents complement and
reinforce the [4 + 2] cycloaddition regioselectivity dictated
by the linking tether, the intermediate 1,3-dipole is stabilized
by the complementary substitution at the dipole termini, and
the tethered 1,3-dipolarophile (indole) complements the [3
+ 2] cycloaddition regioselectivity that is dictated by the
linker tether. The relative stereochemistry in each cycload-
duct is controlled by a combination of (1) the dienophile
geometry and (2) an exclusive endo indole [3 + 2] cycload-
dition13 sterically directed to the R-face opposite the newly
formed fused lactam. This endo diastereoselection for the
1,3-dipolar cycloaddition may be attributed to a conforma-
tional (strain) preference dictated by the dipolarophile tether
since it mirrors the relative energy of the four possible
Figure 2. Key cycloaddition cascade.
(8) Racemic total syntheses: (a) Ando, M.; Bu¨chi, G.; Ohnuma, T. J.
Am. Chem. Soc. 1975, 97, 6880. (b) Kutney, J. P.; Bunzli-Trepp, U.; Chan,
K. K.; De Souza, J. P.; Fujise, Y.; Honda, T.; Katsube, J.; Klein, F. K.;
Leutwiler, A.; Morehead, S.; Rohr, M.; Worth, B. R. J. Am. Chem. Soc.
1978, 100, 4220. (c) Andriamialisoa, R. Z.; Langlois, N.; Langlois, Y. J.
Org. Chem. 1985, 50, 961. Formal racemic total syntheses: (d) Ban, Y.;
Sekine, Y.; Oishi, T. Tetrahedron Lett. 1978, 2, 151. (e) Takano, S.;
Shishido, K.; Sato, M.; Yuta, K.; Ogasawara, K. J. Chem. Soc., Chem.
Commun. 1978, 943. Takano, S.; Shishido, K.; Matsuzaka, J.; Sato, M.;
Ogasawara, K. Heterocycles 1979, 13, 307. (f) Danieli, B.; Lesma, G.;
Palmisano, G.; Riva, R. J. Chem. Soc., Chem. Commun. 1984, 909. Danieli,
B.; Lesma, G.; Palmisano, G.; Riva, R. J. Chem. Soc., Perkin Trans. 1
1987, 155. (g) Zhou, S.; Bommeziijn, S.; Murphy, J. A. Org. Lett. 2002, 4,
443.
(9) Enantioselective total syntheses: (a) Feldman, P. L.; Rapoport, H.
J. Am. Chem. Soc. 1987, 109, 1603. (b) Kuehne, M. E.; Podhorez, D. E.;
Mulamba, T.; Bornmann, W. G. J. Org. Chem. 1987, 52, 347. (c) Kobayashi,
S.; Ueda, T.; Fukuyama, T. Synlett 2000, 883. Formal enantioselective total
syntheses: Cardwell, K.; Hewitt, B.; Ladlow, M.; Magnus, P. J. Am. Chem.
Soc. 1988, 110, 2242.
The preparation of the 1,3,4-oxadiazole precursors 4 is
summarized in Scheme 1. Treatment of N-methyl-6-meth-
oxytryptamine (6)11 with phenyl carbonate followed by
hydrazine provided 7 (64%), which was coupled with methyl
oxalate (EDCI, DMAP, CH2Cl2, 23 °C, 61%) to provide 9
(see Supporting Information). Alternatively, 6 was first
treated with carbonyldiimidazole (CDI) to form 8 (90%) and
subsequently treated with methyl oxalylhydrazide12 to furnish
9 (79%). Cyclization via dehydration of 9 (1.0 equiv of TsCl,
2.5 equiv of Et3N, CH2Cl2, 67%) provided 10, which was
coupled with isomerically pure (Z)- or (E)-11 to provide 4a
(96%) and 4b (88%).
Both 4a and 4b undergo the tandem [4 + 2]/[3 + 2]
cycloaddition cascade to give the pentacyclic products 5a
(10) (a) Wilkie, G. D.; Elliott, G. I.; Blagg, B. S. J.; Wolkenberg, S.;
Soenen, D. R.; Miller, M. M.; Pollack, S.; Boger, D. L. J. Am. Chem. Soc.
2002, 124, 11292. (b) Yuan, Z. Q.; Ishikawa, H.; Boger, D. L. Org. Lett.
2005, 7, 741.
(11) Takano, S.; Shishido, K.; Matsuzaka, J.; Sato, M.; Ogasawara, K.
Heterocycles 1979, 13, 307. An improved preparation is detailed in
Supporting Information.
(12) Christl, M.; Lanzendoerfer, U.; Groetsch, M. M.; Ditterich, E.;
Hergmann, J. Chem. Ber. 1990, 123, 2031.
(13) Padwa, A.; Price, A. T. J. Org. Chem. 1998, 63, 556; 1995, 60,
6258. Interestingly, intermolecular [3 + 2] variants proceed with indole
exo cycloaddition directed to an analogous R-face, see: Muthusamy, S.;
Gunanathan, C.; Babu, S. A. Tetrahedron Lett. 2001, 42, 523.
(6) (a) Mangeney, P.; Andriamialisoa, R. Z.; Langlois, N.; Langlois, Y.;
Potier, P. J. Am. Chem. Soc. 1979, 101, 2243. (b) Kutney, J. P.; Choi, L.
S. L.; Nakano, J.; Tsukamoto, H.; McHugh, M.; Boulet, C. A. Heterocycles
1988, 27, 1845. (c) Kuehne, M. E.; Matson, P. A.; Bornmann, W. G. J.
Org. Chem. 1991, 56, 513. (d) Magnus, P.; Mendoza, J. S.; Stamford, A.;
Ladlow, M.; Willis, P. J. Am. Chem. Soc. 1992, 114, 10232. (e) Yokoshima,
S.; Ueda, T.; Kobayashi, S.; Sato, A.; Kuboyama, T.; Tokuyama, H.;
Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 2137. Kuboyama, T.;
Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 11966.
(7) Review: Kuehne, M. E.; Marko, I. In The Alkaloids; Brossi, A.,
Suffness, M., Eds.; Academic: San Diego, 1990; Vol. 37, p 77.
4540
Org. Lett., Vol. 7, No. 20, 2005