C O M M U N I C A T I O N S
Table 1. Copper-Catalyzed Diboration of Aldehydes
We thank Dr. Peter Mu¨ller (MIT) for crystallographic assistance.
We are indebted to Prof. T. B. Marder (University of Durham),
Mr. H. Zhao, and Prof. Z. Lin (Hong Kong University of Science
and Technology) for graciously sharing results prior to publication,
and for helpful discussions raising the possibility of a 1′-1
rearrangement.
yield
yield
(%)a,b
entry
R
)
(%)a,b
entry
R
)
1
2
3
C6H5
88
86
94
80
81
87
91
8
9
2,4,6-Me3C6H2
n-butyl
iso-butyl
tert-butyl
cyclohexyl
3-pyridyl
2-thienyl
73
94
95
71
97
66
95
Supporting Information Available: Experimental procedures and
characterization for all products; crystallographic data (also available
as a CIF) and structure refinement details for 1 and 2. This material is
4-MeOC6H4
4-MeC6H4
4-BrC6H4
4-ClC6H4
4-CF3C6H4
2-MeOC6H4
10
11d
12
13e
14
4c
5c
6c
7
References
(1) Laitar, D. S.; Mu¨ller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127,
17196-17197.
a Conditions: unless otherwise noted, 1 mol % (ICy)CuOt-Bu, 1 equiv
aldehyde, 1 equiv bis(pinacolato)diboron, 22 h. b Isolated yield, average of
two runs. c Reaction run using 2.3 mol % (ICy)CuOt-Bu. d Product was
isolated as R-hydroxyneopentyl(pinacol)boronate after column chromatog-
raphy on silica gel. e Reaction run using 10 mol % (ICy)CuOt- Bu.
(2) Copper(I) boryl complexes as likely intermediates: (a) Ito, H.; Yamanaka,
H.; Tateiwa, J.-i.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821-6825.
(b) Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2001,
625, 47-53. (c) Ramachandran, P. V.; Pratihar, D.; Biswas, D.; Srivastava,
A.; Ram Reddy, M. V. Org. Lett. 2004, 6, 481-484. (d) Ito, H.;
Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034-
16035.
(entries 7 and 8). Halogen substituents such as chloride and bromide
do not interfere with the reaction. Aliphatic aldehydes bearing
primary, secondary, and tertiary alkyl substituents react in excellent
yield (entries 9-12). The diboration products can generally be
isolated pure by filtration and reconcentration of their solutions in
hydrocarbons, or by recrystallization. In the case of the oily product
of pivaldehyde diboration (entry 11), an attempt at chromatographic
purification on silica gel resulted in B-O bond cleavage, and the
product was isolated as the R-hydroxyneopentylboronate ester. This
selective hydrolysis also afforded the R-borobenzyl alcohol used
in the attempted synthesis of 1′ described above.
Certain aldehydes derived from aromatic heterocycles form 1,2-
diboration products in good yield (entries 13, 14). The substrate
2-pyridinecarboxaldehyde, however, undergoes reductive coupling
to form a 1,2-dipyridyl-1,2-bis(pinacolboroxy)ethane as the major
reaction product; the reason for this change in selectivity is currently
unknown. The reaction of 4-pyridinecarboxaldehyde with (pin)B-
B(pin) results in reductive coupling even in the absence of copper
catalyst. Analogous reactions have been observed for sterically
unencumbered aldimines.11,18
In the solid state, the aldehyde diboration products are stable
for weeks when protected from air and light. No decomposition
was observed in benzene solutions, even those saturated with water,
after several days at ambient temperature. Exposure to dioxygen
results in slow oxidation, regenerating the aldehydes and forming
[(pin)B]2O. This reaction occurs more rapidly for benzylic than
for aliphatic diboration products.
In conclusion, the insertion of an aldehyde CdO group into a
copper-boron bond leads to the formation of a metal-carbon
σ-bond. The product complex undergoes further reaction with a
diboron reagent in the presence of aldehyde, resulting in carbon-
boron bond formation. These key processes form the basis of a
versatile catalytic 1,2-diboration of aldehydes. The products of this
reaction are potentially useful as masked R-hydroxyalkyl anions
for organic synthesis.
(3) (a) Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.;
Miyaura, N. Organometallics 1996, 15, 713-720. (b) Clark, G. R.; Irvine,
G. J.; Roper, W. R.; Wright, L. J. Organometallics 1997, 16, 5499-5505.
(c) Onozawa, S.-y.; Tanaka, M. Organometallics 2001, 20, 2956-2958.
(d) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Organometallics 2006, 25,
2405-2408.
(4) Selected aldehyde insertions into metal-silicon bonds: (a) Si-C/Ta-O
bond formation, Arnold, J.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109,
3318-3322. (b) Mn-C/Si-O bond formation, Johnson, D. L.; Gladysz,
J. A. Inorg. Chem. 1981, 20, 2508-2515.
(5) (a) Organoboranes for Syntheses; Ramachandran, P. V., Brown, H. C.,
Eds.; ACS Symposium Series 783; American Chemical Society: Wash-
ington, DC, 2001. (b) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95,
2457-2483.
(6) For reviews, see (a) Marder, T. B.; Norman, N. C. Top. Catal. 1999, 5,
63-73. (b) Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271-280.
(7) See for example (a) Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott,
S. A. Angew. Chem., Int. Ed. Engl. 1995, 34, 1336-1338. (b) Nguyen,
P.; Coapes, R. B.; Woodward, A. D.; Taylor, N. J.; Burke, J. M.; Howard,
J. A. K.; Marder, T. B. J. Organomet. Chem. 2002, 652, 77-85.
(8) See for example (a) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A.
J. Am. Chem. Soc. 1993, 115, 11018-11019. (b) Iverson, C. N.; Smith,
M. R., III. Organometallics 1996, 15, 5155-5165. (c) Thomas, R. L.;
Souza, F. E. S.; Marder, T. B. J. Chem. Soc., Dalton Trans. 2001, 1650-
1656 and references therein.
(9) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken, J. P.
J. Am. Chem. Soc. 2004, 126, 16328-16329.
(10) See for example Bell, N. J.; Cox, A. J.; Cameron, N. R.; Evans, J. S. O.;
Marder, T. B.; Duin, M. A. Elsevier, C. J.; Baucherel, X.; Tulloch, A. A.
D.; Tooze, R. P. Chem. Commun. 2004, 1854-1855 and references therein.
(11) Mann, G.; John, K. D.; Baker, R. T. Org. Lett. 2000, 2, 2105-2108.
(12) Carter, C. A. G.; Vogels, C. M.; Harrison, D. J.; Gagnon, M. K. J.; Norman,
D. W.; Langler, R. F.; Baker, R. T.; Westcott, S. A. Organometallics
2001, 20, 2130-2132.
(13) Carter, C. A. G.; John, K. D.; Mann, G.; Martin, R. L.; Cameron, T. M.;
Baker, R. T.; Bishop, K. L.; Broene, R. D.; Westcott, S. A. Bifunctional
Lewis Acid Reactivity of Diol-Derived Diboron Reagents. In Group 13
Chemistry/From Fundamentals to Applications; Shapiro, P. J., Atwood,
D. A., Eds.; ACS Symposium Series 822; American Chemical Society:
Washington, DC, 2002; pp 70-87.
(14) Use of R-silylalkyl-Li or -Mg reagents, followed by Si-C bond oxidation,
for this purpose: (a) Tamao, K.; Iwahara, T.; Kanatani, R.; Kumada, M.
Tetrahedron Lett. 1984, 25, 1909-1912. (b) Tamao, K.; Kanatani, R.;
Kumada, M. Tetrahedron Lett. 1984, 25, 1913-1916.
(15) Kennedy, J. D. In Multinuclear NMR; Mason, J., Ed.; Plenum Press: New
York, 1987; pp 221-258.
(16) Mankad, N. P.; Laitar, D. S.; Sadighi, J. P. Organometallics 2004, 23,
1191-1193.
(17) (IPr)CuMe + ROH: Goj, L. A.; Blue, E. D.; Munro-Leighton, C.; Gunnoe,
T. B.; Petersen, J. L. Inorg. Chem. 2005, 44, 8647-8649.
(18) These products have been prepared previously by McMurry-type cou-
plings: Clerici, A.; Porta, O. Tetrahedron 1983, 39, 1239-1246.
Acknowledgment. We thank the NSF (Grant No. CHE-
0349204), the MIT Department of Chemistry, and Corning Inc.
for funding. The MIT UROP office has generously supported E.Y.T.
JA064019Z
9
J. AM. CHEM. SOC. VOL. 128, NO. 34, 2006 11037