Communications
Suzuki, Y. Takeuchi, J. Am. Chem. Soc. 2000, 122, 10728 – 10729;
c) N. Shibata, E. Suzuki, T. Asahi, M. Shiro, J. Am. Chem. Soc.
2001, 123, 7001 – 7009; d) N. Shibata, T. Ishimaru, E. Suzuki,
K. L. Kirk, J. Org. Chem. 2003, 68, 2494 – 2497; e) N. Shibata, T.
Ishimaru, T. Nagai, J. Kohno, T. Toru, Synlett 2004, 1703 – 1706;
f) N. Shibata, T. Ishimaru, M. Nakamura, T. Toru, Synlett 2004,
2509 – 2512; g) N. Shibata, T. Tarui, Y. Doi, K. L. Kirk, Angew.
Chem. 2001, 113, 4593 – 4595; Angew. Chem. Int. Ed. 2001, 40,
4461 – 4463; .
in a palladium-catalyzed allylic fluorobis(phenylsulfonyl)me-
thylation reaction. The effect of fluorine substitution on the
reactivity and enantioselectivity of the reagent 1 is remark-
able. The products 3a were readily converted to chiral
methylfluorinated ibuprofens (S)-and ( R)-4 by reductive
desulfonylation and oxidation. The biologically important
fluoro-b-d-carbaribofuranose 5 was also synthesized from 3g
by dihydroxylation and reductive desulfonylation. The pres-
ent methodology can be applicable for a wider variety of
monofluoromethylated derivatives of NSAIDs and fluoro
sugars. The biological activities of (S)-and ( R)-4 as NSAIDs
and the pharmacokinetics of the enantiomers of 4 will be
evaluated and reported in due course.
[8] a) G. K. S. Prakash, J. Hu, G. A. Olah, J. Org. Chem. 2003, 68
4457 – 4463; b) Y. Li, J. Hu, Angew. Chem. 2005, 117, 6032 –
6036; Angew. Chem. Int. Ed. 2005, 44, 5882 – 5886.
[9] S. Nakamura, T. Fukuzumi, T. Toru, Chirality 2004, 16, 10 – 12.
[10] a) L. Acemoglu, J. M. J. Williams, J. Mol. Catal. A 2003, 196, 3 –
11; b) B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921 –
2944; c) P. V. Matt, A. Pfaltz, Angew. Chem. 1993, 105, 614 – 615;
Angew. Chem. Int. Ed. Engl. 1993, 32, 566 – 568; d) J. Sprinz, G.
Helmchen, Tetrahedron Lett. 1993, 34, 1769 – 1772; e) G. J.
Dawson, C. G. Frost, J. M. J. Williams, S. J. Coote, Tetrahedron
Lett. 1993, 34, 3149 – 3150; f) B. M. Trost, D. L. V. Vranken, C.
Bingel, J. Am. Chem. Soc. 1992, 114, 9327 – 9343.
Received: February 16, 2006
Revised: May 15, 2006
Published online: July 4, 2006
Keywords: asymmetric synthesis · drug design · fluorine ·
.
fluoromethylation · palladium
[11] a) See the Supporting Information. b) A typical experimental
procedure is given in the Supporting Information.
[12] H. J. Castejon, K. B. Wiberg, J. Org. Chem. 1998, 63, 3937 – 3942.
[13] a) The reaction mechanism is discussed in the Supporting
Information. b) Absolute stereochemistries were assigned by
X-ray crystallographic analysis (for 3d, see the Supporting
Information) or tentatively determined by comparing the optical
rotations of 3a and 3b with those of their non-fluorinated
derivatives (see the Supporting Information); c) Enantiomeric
excesses of 3g,h were determined by HPLC analysis using
CHIRALCEL OD-H. The absolute stereochemistry of 3g was
assigned based on the proposed reaction mechanism (see
reference [10b, f] and the Supporting Information) and tenta-
tively determined by comparing the optical rotation with that of
b-d-carbaribofuranose after chemical derivatization of 3g to 5-
deoxy-5-fluoro-b-d-carbaribofuranose (5) (see Scheme 3).
[14] H. Hao, G. Wang, J. Sun, Drug Metab. Rev. 2005, 37, 215 – 234.
[15] a) O. Goj, S. Kotila, G. Haufe, Tetrahedron 1996, 52, 12761 –
12774; b) W. J. Middleton, E. M. Bingham, J. Fluorine Chem.
1983, 22, 561 – 574; c) Y. Yamazaki, S. Yusa, Y. Kageyama, H.
Tsue, K. Hirao, H. Okuno, J. Fluorine Chem. 1996, 79, 167 – 171;
d) M. Schlosser, D. Michel, Z. Guo, C. J. Sih, Tetrahedron 1996,
52, 8257 – 8262; e) M. Villa, N. J. Smeyers, M. -L. Senent, Y. G.
Smeyers, THEOCHEM 2001, 537, 265 – 269; f) Y. Takeuchi, H.
Fujisawa, T. Fujiwara, M. Matsuura, H. Komatsu, S. Ueno, T.
Matsuzaki, Chem. Pharm. Bull. 2005, 53, 1062 – 1064.
[16] Other monofluoromethylarylpropionic acid derivatives besides
4 have been reported: a) D. Haigh, L. J. Jefcott, K. Magee, H.
McNab, J. Chem. Soc. Perkin Trans. 1 1996, 2895 – 2900; b) M. C.
Lu, L. B. Shih, H. S. Jae, J. E. Gearien, E. B. Thompson, J. Med.
Chem. 1987, 30, 424 – 427; c) S. Hamman, C. G. Beguin, Tetrahe-
dron Lett. 1983, 24, 57 – 60; d) J. Barker, R. Keck, J. Rꢁtey,
Tetrahedron Lett. 1982, 23, 1549 – 1552; e) F. Faustini, S. D.
Munari, A. Panzeri, V. Villa, C. A. Gandolfi, Tetrahedron Lett.
1981, 22, 4533 – 4536; f) G. A. Olah, G. K. S. Prakash, Y. L. Chao,
Helv. Chim. Acta 1981, 64, 2528 – 2530; g) R. Keck, J. Rꢁtey,
Helv. Chim. Acta 1980, 63, 769 – 772; h) Y. Yamazaki, S. Yusa, Y.
Kageyama, H. Tsue, K. Hirao, H. Okuno, J. Fluorine Chem.
1996, 79, 167 – 171.
[1] a) BiomedicinalAspects of Ful orine Chemistry (Eds.: R. Filler,
Y. Kobayashi), Elsevier Biomedical Press and Kodansha Ltd,
New York, 1982; b) “Biomedical Frontiers of Fluorine Chemis-
try”: ACS Symp. Ser. 1996, 639; c) Organofluorine Compounds
in MedicinalChemistry and BiomedicalAppilcations (Eds.: R.
Filler, Y. Kobayashi, L. M. Yagupolskii), Elsevier, Amsterdam,
1993.
[2] a) Enantiocontrolled Synthesis of Fluoro-Organic Compounds:
Stereochemical Challenges and Biomedical Targets (Ed.: V. A.
Soloshonok), Wiley, Chichester, 1999; b) “Asymmetric Fluo-
roorganic Chemistry. Synthesis, Applications, and Future Direc-
tions”: ACS Symp. Ser. 2000, 746; c) R. D. Chambers, Fluorine in
Organic Chemistry, Blackwell Publishing, Oxford, UK, 2004;
d) P. Kitsch, Modern Fluoroorganic Chemistry, Wiley-VCH,
Weinheim, 2004.
[3] a) H. Ibrahim, A. Togni, Chem. Commun. 2004, 1147 – 1155;
b) J.-A. Ma, D. Cahard, Chem. Rev. 2004, 104, 6119 – 6146;
c) G. K. S. Prakash, A. K. Yudin, Chem. Rev. 1997, 97, 757 – 786;
d) After submission of this manuscript, the diastereoselective
nucleophilic monofluoromethylation of imines with fluoro-
methyl phenyl sulfone was described: Y. Li, C. Ni, J. Liu, L.
Zhang, J. Zheng, L. Zhu, J. Hu, Org. Lett. 2006, 8, 1693 – 1696.
[4] a) Fusso Yakugaku (Eds.: Y. Kobayashi, I. Kumadaki, T.
Taguchi), Hirokawa, Tokyo, 1992; b) Organofluorine Chemistry:
Principles and Commercial Applications (Eds.: R. E. Banks,
B. E. Smart, J. C. Tatlow), Plenum, New York, 1994, chap. 3;
c) B. E. Smart, J. Fluorine Chem. 2001, 109, 3 – 11.
[5] a) G. W. Gribble, J. Chem. Educ. 1973, 50, 460 – 462; b) R.
Peters, R. W. Wakelin, Proc. R. Soc. London Ser. B 1953, 140,
497 – 507; c) E. Kun, R. J. Dummel, Methods Enzymol. 1969, 13,
623 – 672.
[6] a) D. OꢀHagan, H. S. Rzepa, Chem. Commun. 1997, 645 – 652;
b) J. Kollonitsch in BiomedicinalAspects of Fluorine Chemistry ,
(Eds.: R. Filler, Y. Kobayashi), Elsevier Biomedical Press and
Kodansha Ltd, New York, Tokyo, 1982, pp. 93 – 122; c) R. H.
Abeles, A. L. Maycock, Acc. Chem. Res. 1976, 9, 313 – 319;
d) R. B. Silverman, S. M. Nanavati, J. Med. Chem. 1990, 33, 931 –
936; e) J. Kollonitsch, A. A. Patchett, S. Marburg, A. L. May-
cock, L. M. Perkins, G. A. Doldouras, D. E. Duggan, S. D. Aster,
Nature 1978, 274, 906 – 908.
[17] Absolute stereochemistries were determined by comparing the
optical rotations of 4 with those of ibuprofen. (S)-4 (91% ee):
[a]3D0 = + 50.1 (c = 0.57 in EtOH); (R)-4 (91% ee): [a]3D0 = À50.1
(c = 0.68, EtOH); (S)-ibuprofen (91% ee): [a]3D0 = + 60 (c = 2 in
EtOH), see D. G. Kaiser, G. J. Vangiessen, R. J. Reischer, W. J.
Weckter, J. Pharm. Sci. 1976, 65, 269 – 273.
[7] a) N. Shibata, J. Kohno, K. Takai, T. Ishimaru, S. Nakamura, T.
Toru, S. Kanemasa, Angew. Chem. 2005, 117, 4276 – 4279;
Angew. Chem. Int. Ed. 2005, 44, 4204 – 4207; b) N. Shibata, E.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 4973 –4977