Scheme 4 Coordination geometry of 4.
spectrum in comparison to 2 (Fig. 1). Dithiaethyneazuliporphyrin
acts as a monoanionic ligand forming the Ru–C(20) s-bond.
1
Accordingly, the unique H(20) resonance seen in the H NMR
Fig. 2 1H NMR spectra of 2 (A; benzene-d6, 298 K) and 4 (B; CD2Cl2,
220 K). Peak labels follow systematic position numbering or denote proton
groups: o-, m-, p-Ph – ortho, meta and para positions of the meso-phenyls.
spectrum of 2 is missing in the spectrum of 4.
In contrast to ruthenium(II) 21,23-dithiaporphyrin10
(S2TPP)RuIICl2 and ruthenium(II) dithiaethyneporphyrin4
(S2ETPP)RuII(CO)2Cl, molecule 4 preserves the Cs symmetry
with a mirror plane passing through the ruthenium, chloride and
coordinated azulene carbon as reflected by a single AB pattern
assigned to the b protons of two thiophene rings (Fig. 2B). The
downfield with respect to meso- (3.35 ppm) or b-substituted
monoazuliporphyrins (1.59 ppm).6 One can consider the 1H NMR
shifts of the internally located H(20) proton and the peripheral
thiophene resonances as a convenient spectroscopic criterion of
macrocyclic aromaticity. Thus the molecule 2 is only weakly
aromatic, reflecting the limited contribution of the 18 p-electron
delocalization pathway resulting from the input of the dipolar
canonical structures 29 and 20.
1
geometry of 4, inferred from the H NMR spectroscopic pattern
(Fig. 2B), reflects the balance between the constraints of the
macrocyclic ligand and the requirements of ruthenium(II) for
octahedral geometry (Scheme 4). The dithiaethyneazuliporphyrin
molecule 2 has to distort to accommodate the Ru(CO)2Cl moiety.
The puckering of dithiaethyneazuliporphyrin and the difference in
coordination above and below the porphyrin plane lower the
symmetry with respect to the carbaporphyrinoid plane.
Accordingly, two ortho and two meta resonances have been
identified for one set of meso aryls (8,13-Ph) at 220 K.
Two canonical structures of 29 and 20 define 18 p-electron
macrocyclic delocalization pathways (Scheme 3). Accordingly, the
electronic structure of 2 can be described as reflecting a
combination of the acetylene (LC–CMC–CL) and cumulene
(–CLCLCLC–) character of the C18–C1–C2–C3 fragment.
The 13C NMR chemical shift of carbon atoms C(1) and C(2) of
the linker at 2 equals 106.1 ppm, upfield in relation to 1 (116.8
ppm).4 Thus the acetylene character of the CspCsp moiety of 2
prevails. The detected chemical shifts of 2 are fairly typical
for acetylene-cumulene porphyrinoids8 and acetylene-cumulene
dehydroannulenes.9
In conclusion, dithiaethyneazuliporphyrin 2, the original con-
tracted carbaporphyrinoid, is a peculiar molecule combining three
structural motifs: acetylene, azulene and thiophene moieties in a
[18]triphyrin(4.1.1) frame.
We thank the Ministry of Scientific Research and Information
Technology (Grant PBZ-KBN-118/T09/5) for financial support.
Reaction of 2 with Ru3(CO)12 in chlorobenzene under reflux
results in the formation of ruthenium(II) dithiaethyneazulipor-
phyrin (S2EATPP)RuII(CO)2Cl (4). The relatively small yield
reflects the inherent instability of the maternal macrocycle,
which decomposes in the insertion conditions. Coordination of
ruthenium is reflected in the substantial changes of the electronic
Notes and references
´
1 P. J. Chmielewski and L. Latos-Graz˙ynski, Coord. Chem. Rev., 2005,
249, 2510; A. Srinivasan and H. Furuta, Acc. Chem. Res., 2005, 38, 10;
´
M. Ste˛pien and L. Latos-Graz˙ynski, Acc. Chem. Res., 2005, 38, 88;
M. Pawlicki and L. Latos-Graz˙ynski, Chem. Rec., 2006, 6, 64.
´
´
´
2 E. Pacholska, L. Latos-Graz˙ynski, L. Szterenberg and Z. Ciunik, J. Org.
Chem., 2000, 65, 8188; S. Venkatraman, V. G. Anand, S. K. Pushpan,
J. Sankar and T. K. Chandrashekar, Chem. Commun., 2002, 462;
S. Venkatraman, V. G. Anand, H. PrabhuRaja, H. Rath, J. Sankar,
T. K. Chandrashekar, W. Teng and K. Ruhlandt-Senge, Chem.
Commun., 2002, 1660; T. D. Lash, D. A. Colby, S. R. Graham and
S. T. Chaney, J. Org. Chem., 2004, 69, 8851.
3 S. K. Pushpan, A. Srinivasan, V. G. Anand, S. Venkatraman,
T. K. Chandrashekar, B. S. Joshi, R. Rao and H. Furuta, J. Am.
Chem. Soc., 2001, 123, 5138; A. Srinivasan, T. Ishizuka and H. Furuta,
Angew. Chem., Int. Ed., 2004, 43, 876.
´
4 A. Berlicka, L. Latos-Graz˙ynski and T. Lis, Angew. Chem., Int. Ed.,
2005, 44, 5288.
5 E. Pacholska, L. Latos-Graz˙ynski and Z. Ciunik, Chem.–Eur. J., 2002,
´
8, 5403; Y. Inokuma, J. H. Kwon, T. K. Ahn, M.-C. Yoo, D. Kim and
´
A. Osuka, Angew. Chem., Int. Ed., 2006, 45, 961; R. Mysliborski,
Scheme 3 Canonical structures of 2.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 3346–3348 | 3347