Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Scheme 2. Gram-scale synthesis and applications of the Markovnikov reaction via
photoredox catalysis.
DOI: 10.1039/C9CC05902D
Thomas. Chem. Cat. Chem. 2015, 7, 190.
a) Gram-Scale synthesis:
3
For selected reviews, see: (a) F. Hebrard, P. Kalck, Chem. Rev.
2009, 109, 4272; (b) L. Wu, Q. Liu, B. M. Jackstell. Angew.
Chem. Int. Ed. 2014, 53, 6310; (c) J. Dai, W. Ren, J. Li, Y. Shi.
Org. Chem. Front. 2018, 5, 561; for recent examples, see: (d)
X. Zhou, G. Zhang, B. Gao, H. Huang, Org. Lett. 2018, 20, 2208;
(e) T. Xu, F. Sha, H. Alper, J. Am. Chem. Soc. 2016, 138, 6629;
(f) H. Huang, C. Yu, Y. Zhang, Y. Zhang, P. S. Mariano, W. Wang,
J. Am. Chem. Soc. 2017, 139, 9799; (g) W. Ren, W. Chang, J.
Dai, Y. Shi, J. Li, Y. Shi, J. Am. Chem. Soc. 2016, 138, 14864.
(a) A. Bhunia, K. Bergander, A. Studer. J. Am. Chem. Soc. 2018,
140, 16353; (b) L. Bini, C. Müller, D. Vogt. Chem. Commun.
2010, 46, 8325; (c) X. Li, C. You, J. Yang, S. Li, D. Zhang, H. Lv,
X. Zhang, Angew. Chem. Int. Ed. 2019, 58, 10928; (d) G. Wang,
X. Xie, W. Xu, Y. Liu, Org. Chem. Front. 2019, 6, 2037; (e) P.
Orecchia, W. Yuan, M. Oestreich, Angew. Chem. Int. Ed. 2019,
58, 3579; (f) M. d. Greef, B. Breit, Angew. Chem. Int. Ed. 2009,
48, 551; (g) X. Fang, P. Yu, B. Morandi, Science 2016, 351, 832.
For selected reviews, see: (a) L. Huang, M. Arndt, K. Gooβen,
H. Heydt, L. J. Gooβen. Chem. Rev. 2015, 115, 2596; (b) K. D.
Hesp, M. Stradiotto. Chem. Cat. Chem. 2010, 2, 1192; (c) T. E.
Müller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada. Chem. Rev.
2008, 108, 3795; (d) M. T. Pirnot, Y.-M. Wang, S. L. Buchwald,
Angew. Chem. Int. Ed. 2016, 55, 48; for recent examples, see:
(e) S. Guo, J. C. Yang, S. L. Buchwald, J. Am. Chem. Soc. 2018,
140, 15976; (f) S. W. Lardy, V. A. Schmidt, J. Am. Chem. Soc.
2018, 140, 12318; (g) D. Niu, S. L. Buchwald, J. Am. Chem. Soc.
2015, 137, 9716.
G
N
O
I
(5 mol%)
G
O
N
N
4-MeOPhSH (20 mol%)
CHCl3, N2,blue LED, -15 o
NH
H
H
1a
3 mmol, 1.14 g
G : 3,5-(CF3)2C6H3
b) Applications:
HO
C
2a
, 71% yield
1) ethylene glycol, TsOH, toluene
2) MeI, NaH, CH2Cl2, 50 o
Me
OMe
C
Me
H
3) 2M HCl, r.t.
H
H
Me
4
5
Me
4) NCCH2CO2H, NH4OAc, toluene
5) LiAlH4, THF
H
G
N
H
H
H
6) 3,5-CF3C6H3NCO, CH2Cl2
O
1o
Stanolone
OMe
Me
OMe
Me
Conditions A
Conditions B
Me
Me
G
H
H
HN
O
H
H
N
H
H
H
N
N
2o
, 75% yield
G
O
G : 3,5-(CF3)2C6H3
3o
, 63% yield
:
:
(5 mol%), 4-MeOC6H4SH (20 mol%), CHCl3, N2, Blue LED, - 15 oC
Conditions A
Conditions B
I
I
(5 mol%), 4-CF3C6H4SH (20 mol%), CHCl3, N2, Blue LED, r.t.
Scheme 3. Control experiments and the plausible catalytic mechanism.
a) Control experiments:
I
(5 mol%), 4-MeOC6H4SH (20 mol%)
Complex mixture
O
CHCl3, N2, Blue LED, - 15 o
C
Ar
1a',
R' = H, R'' = Bn
N
N
6
7
(a) L. Hintermann, Recent Developments in Metal-Catalyzed
Additions of Oxygen Nucleophiles to Alkenes and Alkynes. In
C-X Bond Formation; Vigalok, A.; Ed.; Springer Berlin
Heidelberg: Berlin, Heidelberg, 2010; pp 123-155; (b) P. T.
Marcyk, S. P. Cook, Org. Lett. 2019, 21, 1547; (c) C. S. Sevov, J.
F. Hartwig, J. Am. Chem. Soc. 2013, 135, 9303.
For selected reviews, see: (a) J.-B. Chen, A. Whiting, Synthesis
2018, 50, 3843; (b) J. V. Obligacion, P. J. Chirik, Nat. Rev. Chem.
2018, 2, 15; for recent examples, see: (c) J. Peng, J. H. Dochery,
A. P. Dominey, S. P. Thomas, Chem. Commun. 2017, 53, 4726;
(d) K. Duvvuri, K. R. Dewese, M. M. Parsutkar, S. M. Jing, M.
M. Mehta, J. C. Gallucci, T. V. RajanBabu, J. Am. Chem. Soc.
2019, 141, 7365; (e) G. Zhang, H. Zeng, J. Wu, Z. Yin, S. Zheng,
J. C. Fettinger, Angew. Chem. Int. Ed. 2016, 55, 14369; (f) A.
Bismuto, M. J. Cowley, S. P. Thomas, ACS Catal. 2018, 8, 2001;
(g) A. J. MacNair, C. R. P. Millet, G. S. Nichol, A. Ironmonger, S.
P. Thomas, ACS Catal. 2016, 6, 7217.
(a) K. A. Margrey, D. A. Nicewicz, Acc. Chem. Res. 2016, 49, 9,
1997; (b) E. C. Gentry, R. R. Knowles, Acc. Chem. Res. 2016, 49,
1546; (c) A. J. Musacchio, B. C. Lainhart, X. Zhang, S. G. Naguib,
T. C. Sherwood, R. R. Knowles, Science 2017, 355, 727; (d) Q.
Zhu, D. E. Graff, R. R. Knowles, J. Am. Chem. Soc. 2018, 140,
741; (e) S. T. Nguyen, Q. Zhu, R. R. Knowles, ACS Catal. 2019,
9, 4502; (f) D. J. Wilger, J.-M. M. Grandjean, T. R. Lammert, D.
A. Nicewicz, Nat. Chem. 2014, 6, 720; (g) T. M. Nguyen, N.
Manohar, D. A. Nicewicz, Angew. Chem. Int. Ed. 2014, 53,
6198; (h) D. A. Nicewicz, T. M. Nguyen, ACS Catal. 2014, 4,
355.
R'
R''
Ar : 3,5-(CF3)2C6H3
I
(5 mol%), 4-MeOC6H4SH (20 mol%)
Complex mixture
CHCl3, N2, Blue LED, - 15 o
C
1a'',
R' = Me, R'' = H
O
R
I
(5 mol%)
4-MeOPhSH (20 mol%)
CHCl3, N2,blue LED, -15 o
O
N
H
R
N
C
1p
1q
2p
2q
: R = 3,5-(CF3)2
: R = 4-MeO
: R = 3,5-(CF3)2, trace
: R = 4-MeO, 24% yield
b) Possible mechanism:
Ar'S
+ H+
+e-
Ar'SH
PC
Ar'S
HAT
hv
-
-
e
PC*
PC-
R'
R'
O
O
+e-
Ar
Ar
R''
Z
N
N
1
R''
N
N
H
H
H
H
8
M
L
R''
Z
R'
2
- H+
O
Ar
N
N
Ar : 3,5-(CF3)2C6H3
Ar' : 4-MeOC6H4
H
H
N
Conflicts of interest
The authors declare no competing financial interest.
9
(a) T. M. Nguyen, D. A. Nicewicz, J. Am. Chem. Soc. 2013, 135,
9588; (b) N. A. Romero, D. A. Nicewicz, J. Am. Chem. Soc. 2014,
136, 17024.
Notes and references
10 (a) H. Wang, Y. Man, K. Wang, X. Wan, L. Tong, N. Li, B. Tang,
Chem. Commun. 2018, 54, 10989; (b) H. Wang, Y. Ren, K.
Wang, Y. Man, Y. Xiang, N. Li, B. Tang, Chem. Commun. 2017,
53, 9644.
11 CCDC 1936148 (2a) and CCDC 1936149 (3a) contains the
supplementary crystallographic data for this paper.
1
V. P. Ananikov, I. P. Beletskaya, In Hydrofunctionalization; V.
P. Ananikov, M. Tanaka; Topics in Organometallic Chemistry;
Springer: Berlin, Heidelberg, 2013; pp 1-19.
(a) M. Beller, J. Seayad, A. Tillack, H. Jiao. Angew. Chem. Int.
Ed. 2004, 43, 3368; (b) C. Lin, L Shen. Chem. Cat. Chem. 2019,
11, 961; (c) C. Liu, C. F. Bender, X. Han, R. A. Widenhoefer.
2
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins